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Abstract We propose a definition of tunneling and of metastability for a continuous time
Markov process on countable state spaces. We obtain sufficient conditions for a irreducible
positive recurrent Markov process to exhibit a tunneling behaviour. In the reversible case
these conditions can be expressed in terms of the capacities and of the stationary measure of
the Markov process.
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1 Introduction

In the framework of non-equilibrium statistical mechanics, metastability is a relevant dy-
namical phenomenon taking place in the vicinities of first order phase transitions. There
has been along the years several proposals of a rigorous mathematical description of the
phenomenon starting with Lebowitz and Penrose [22] who derived the canonical free en-
ergy for Kac potentials in the Van der Waals limit. The seminal paper of Cassandro, Galves,
Olivieri and Vares [8] proposed a pathwise approach to metastability which highlighted the
underlying Markov structure behind metastability. In the sequel, Neves and Schonmann [23,
24] proved the metastability of the two-dimensional Glauber dynamics on a finite cube at
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very low temperature, Scoppola [28] examined the metastable behavior of finite state space
Markov chains with transition probabilities exponentially small in one parameter, Den Hol-
lander et al. [17, 18] and Gaudillière et al. [15, 16] investigated the nucleation and metasta-
bility in two and three dimensional conservative dynamics in a large box at low temperature
and low density. We refer to [26] for a recent monograph on metastability and the pathwise
approach. More recently, Bovier et al. [5–7] proposed a new approach to metastability based
on potential theory. We refer to [4, 14] for recent accounts on the connection between poten-
tial theory, Markov processes and metastability which includes an updated list of references.

We propose in this article a general definition of tunneling and metastability for se-
quences of Markov processes on countable state spaces, the first general one to our knowl-
edge.

Informally, a process is said to exhibit a metastable behavior if it remains for a very long
time in a state before undergoing a rapid transition to a stable state. After the transition,
the process remains in the stable state for a period of time much longer than the time spent
in the first state, called for this reason metastable. In certain cases, there are two or more
“metastable wells” of the same depth, a situation called by physicists “competing metastable
states”. In these cases, the process thermalizes in each well before jumping abruptly to
another well where the same qualitative behavior is observed.

To describe our approach, denote by EN , N ≥ 1, a sequence of countable spaces and
by (θN : N ≥ 1) a sequence of positive real numbers. For each N ≥ 1, consider a partition
E 1

N, . . . ,E κ
N , �N of EN and a EN -valued Markov process {ηN

t : t ≥ 0}. Fix a state ξN
x in

E x
N , 1 ≤ x ≤ κ . We say that the sequence of Markov processes {ηN

t : t ≥ 0}, N ≥ 1, exhibits
a tunneling behavior in the time scale (θN : N ≥ 1) with metastates E 1

N, . . . ,E κ
N , attractors

ξN
1 , . . . , ξN

κ , and asymptotic behavior described by the Markov process on S = {1, . . . , κ}
with rates {r(x, y) : x, y ∈ S} if the following three conditions are fulfilled:

(1) For every 1 ≤ x ≤ κ , starting from a state ηN in E x
N , with probability converging to one,

the process {ηN
t : t ≥ 0} reaches ξN

x before attaining
⋃

y �=x E y

N .

(2) Let {XN
t : t ≥ 0} be the process XN

t = �N(η
EN
t ), where {ηEN

t : t ≥ 0} is the trace of the
Markov process {ηN

t : t ≥ 0} on EN = ⋃
1≤x≤κ E x

N and where �N(η) = ∑
1≤x≤κ x1{η ∈

E x
N }. The speeded up process {XN

tθN
: t ≥ 0}, usually non Markovian, converges to the

Markov process on S which jumps from x to y at rate r(x, y).
(3) Starting from any point of EN , the time spent by the speeded up Markov process {ηtθN

:
t ≥ 0} on the set �N in any time interval [0, s], s > 0, vanishes in probability.

Condition (1) states that the process thermalizes in each set E x
N before reaching another

metastate set E y

N , y �= x. The assumption of the existence of an attractor is restrictive, but is
satisfied in several interesting examples, as in the condensed zero-range processes [3] which
motivated the present work.

The inter-well dynamics is described in condition (2). It reveals the loss of memory of
the jump times from a well to another, put in evidence in [8]. Observe that the exponential
distribution limit required in [8] is replaced by an asymptotic Markovianity. In this way, we
extend the notion of tunneling to more complex pictures than the standard metastable-to-
stable transition which has been widely studied.

Condition (3) asserts that starting from a metastable state Ex
N , the time spent outside the

set of wells is negligible.
The main results of this article, stated in the next section, establish sufficient conditions

for recurrent Markov processes on countable state spaces to exhibit a tunneling behavior. In
the reversible case, these sufficient conditions can be expressed in terms of the capacity and
of the stationary probability measure of the metastable states.
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In contrast with the pathwise approach to metastability [8], the present one does not offer
a detailed description of the saddle points between the wells nor of the typical path which
drives the system from one well to another. Its description of metastability is in this sense
less precise, but its range of applications is wider since it does not rely on large deviations
estimates and can be used to examine models where the ratio between the jump rates are
not exponential in the scaling parameter, as in the case of condensed zero range processes
where the time scale in which a metastable behavior occurs depends polynomially on the
size of the system [3].

In contrast with the potential approach proposed in [4, 6, 7], the definitions and the
method we present here does not depend on a reversibility assumption, though it becomes
particularly simple in this case. Moreover, the main strength of our approach compared to
the previous works on metastability lies in the fact that it covers the case of several compet-
ing metastable states, a situation which has been disregarded up to now.

Our approach to metastability can be explained in few words. We first consider the trace
of the process on the metastable states. This path surgery permits to ignore the evolution of
the process on �N , a negligible, measure-vanishing set where the dynamics can do anything.
Taking the trace of a process is also a tool very well suited to the reversible case since the
probability of attaining a set before another one is the same for the original process as for
the trace process. In particular, the capacities of the trace process can be expressed by the
capacities of the original process and the jump rates of the trace process can be expressed
by the capacities of the original process. These relations, to our knowledge, have not been
remarked before.

The second idea consists in examining metastability through a martingale problem. As-
sume that θN = 1 to keep notation simple. The main step in the proof consists in showing
that the non-Markovian process XN

t = �N(η
EN
t ) converges to a Markovian process on S. To

prove this assertion, we first show tightness of the process XN
t , which requires to show that

after reaching a metastable state, the process does not leave it immediately. We then use the
martingale problem to characterize all possible limit points. Since η

EN
t is a Markov process,

for every function F : S → R,

F(XN
t ) − F(XN

0 ) −
∫ t

0
L

EN

N F (�N(ηEN
s )) ds (1.1)

is a martingale if L
EN

N represents the generator of η
EN
t . Generally, G(η

EN
s ) = L

EN

N F (�N(η
EN
s ))

is not a function of XN
s and we need to close the equation for the martingale by replac-

ing G(η
EN
s ) by a function of XN

s . Inspired by the one block estimate of the theory of
hydrodynamic limits [21], we propose as candidate Ĝ(XN

s ), the conditional expectation
of G(ηEN ) with respect to the σ -algebra A generated by the partition {Ex

N : 1 ≤ x ≤ κ}:
Ĝ(XN) = EμE [G(ηEN )|A], where μE is the invariant measure for the process η

EN
s , i.e., the

stationary measure μN conditioned to EN . The expectation of
∫ t

0

{
G(ηEN

s ) − Ĝ(XN
s )
}
ds

vanishes if the process thermalizes on each metastable state Ex
N before leaving the set. In

the proof of this result we use the existence of attractors. We believe, however, that this
assumption is not needed and that the convergence of the process to the so-called quasi-
stationary measures on each metastate may be used instead.

In our context the function Ĝ(XN) is a linear combination of the mean rates rN(E x,E y) at
which the process jumps from one metastate to another defined in (2.11). We need therefore
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to show that these rates converge to some r(x, y) in order to conclude the proof of the
convergence of the martingales (1.1) to the martingales which characterize the asymptotic
Markovian dynamics with jump rates r .

Once this has been achieved, we still need to show that the piece which has been removed
from the trajectory when we considered the trace process is negligible. This is the content
of condition (3).

A theory is meaningless if no interesting example is provided which fits in the frame-
work presented. Besides the mean field models considered in [8] and the Freidlin–Wentzell
Markov chains proposed in [26], which naturally enter in the present framework, we exam-
ine in [3] a new class of processes which exhibit a tunneling behavior. This family, known
as the condensed zero-range processes, have been introduced in the physics literature [10,
11, 19] to model the Bose-Einstein condensation phenomena. It has been proved in several
different contexts [1, 12, 20] that, above a critical density, all but a small number of particles
concentrate on one single site in the canonical stationary states of these processes. In [3] we
prove that, in the reversible case, the condensed zero range processes exhibit a tunneling be-
havior by showing that in an appropriate time scale the condensed site evolves according to
a random walk on S. We also prove that the jump rates of the asymptotic Markov dynamics
can be expressed in terms of the capacities of the underlying random walks performed by
the particles.

2 Notation and Results

We define in this section valleys and tunneling and state the main results of the article in
which we present sufficient conditions for a triple to be a valley and for a Markov process to
present a tunneling behavior. There are several subtleties in the definitions which may pass
unnoticed in a first reading. These questions are discussed in the next section where some
simple examples are presented to illustrate some pathologies which may occur.

Fix a sequence (EN : N ≥ 1) of countable state spaces. The elements of EN are denoted
by the Greek letters η, ξ . For each N ≥ 1 consider a matrix RN : EN × EN → R such that
RN(η, ξ) ≥ 0 for η �= ξ , −∞ < RN(η,η) ≤ 0 and

∑
ξ∈EN

RN(η, ξ) = 0 for all η ∈ EN .
Denote by LN the generator which acts on bounded functions f : EN → R as

(LNf )(η) =
∑

ξ∈EN

RN(η, ξ) {f (ξ) − f (η)}. (2.1)

Let {ηN
t : t ≥ 0} be the minimal right-continuous Markov process associated to the gener-

ator LN . We refer to [9, 13, 25] for the terminology and the main facts on Markov processes
alluded to in this article. It is well known, for instance, that {ηN

t : t ≥ 0} is a strong Markov
process with respect to the filtration {F N

t : t ≥ 0} given by F N
t = σ(ηN

s : s ≤ t). To avoid
unnecessary technical considerations, we assume throughout this article that there is no ex-
plosion.

Denote by D(R+,EN) the space of right-continuous trajectories e : R+ → EN with left
limits endowed with the Skorohod topology. Let PN

η , η ∈ EN , be the probability measure on
D(R+,EN) induced by the Markov process {ηN

t : t ≥ 0} starting from η. Expectation with
respect to PN

η is denoted by EN
η and we frequently omit the index N in PN

η , EN
η .

Given a subset F ⊆ EN , define the additive functional T F
t : D(R+,EN) 	→ R+, t ≥ 0 as

the amount of time the path stayed in the set F in the interval [0, t]:

T F
t (e·) :=

∫ t

0
1{es ∈ F }ds, t ≥ 0, (2.2)
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where 1{B} stands for the indicator of the set B . In addition, we denote by TA the hitting
time of a set A ⊆ EN :

TA := inf
{
s > 0 : ηN

s ∈ A
}
,

with the convention that TA = ∞ if ηN
s /∈ A for all s > 0. When the set A is a singleton

{η}, we denote T{η} by Tη . This convention is adopted everywhere below for any variable
depending on a set.

A sequence of states η = (ηN ∈ EN : N ≥ 1) is said to be a point in a sequence A of
subsets of EN , A = (AN ⊆ EN : N ≥ 1), if ηN belongs to AN for every N ≥ 1. For a point
η = (ηN ∈ EN : N ≥ 1) and a set A = (AN ⊆ EN : N ≥ 1), we shall denote the hitting times
of the sets {η} and A as

T N
η := TηN , T N

A := TAN
. (2.3)

Furthermore, for any sequence of subsets A = (AN ⊂ EN : N ≥ 1), F =
(FN ⊂ EN : N ≥ 1), denote by T N

A (F ) the time spent on the set F before hitting the set A:

T N
A (F ) :=

∫ TAN

0
1{ηN

s ∈ FN }ds. (2.4)

In notation (2.3) and (2.4) we shall drop index N whenever its value is clear from the context.

2.1 Valleys with Attractor and Tunneling

We introduce in this subsection the concept of valley. Intuitively, a subset W of the state
space EN is a valley for the Markov process {ηN

t : t ≥ 0} if the process starting from W

thermalizes in W before leaving W at an exponential random time.
To define precisely a valley, consider two sequences W , B of subsets of EN , the second

one containing the first and being properly contained in EN :

W = (WN ⊆ EN : N ≥ 1), B = (BN ⊆ EN : N ≥ 1), WN ⊆ BN � EN. (2.5)

Fix a point ξ = (ξN ∈ WN : N ≥ 1) in W , a sequence of positive numbers θ = (θN : N ≥ 1)

and denote by Bc the complement of B: Bc = (Bc
N : N ≥ 1).

Definition 2.1 Valley The triple (W ,B, ξ) is a valley of depth θ and attractor ξ for the
Markov process {ηN

t : t ≥ 0} if for every point η = (ηN : N ≥ 1) in W

(V1) With probability converging to one, the attractor ξ is attained before the process leaves
B:

lim
N→∞

PηN [Tξ < TBc ] = 1;
(V2) The law of TBc /θN under PηN converges to a mean 1 exponential distribution, as

N → ∞;
(V3) For every δ > 0,

lim
N→∞

PηN

[
1

θN

TBc (�) > δ

]

= 0,

where � = (�N : N ≥ 1) and �N is the annulus BN \ WN .
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We refer to W as the well, and B as the basin of the valley (W ,B, ξ). The first condition
guarantees that the process thermalizes in W before leaving the basin B. The second con-
dition asserts that the process leaves the basin at an exponential time of order given by the
depth of the valley. The last condition requires the process starting from the well to spend a
negligible amount of time in the part of the basin which does not belong to the well.

The definition of valley focus on paths of the Markov process starting from the well W .
Nothing is imposed on the process starting from the annulus �, which may hide other wells,
even deeper than the well W . Nevertheless, condition (V2) ensures that wells in � deeper
than W are avoided in the asymptotic escape trajectory. See also a stronger requirement in
Definition 3.8.

In Sect. 3 we illustrate this definition with simple examples. In particular, we present
examples of Markov processes on finite state spaces and triples (W ,B, ξ) in which all
conditions but one in the above definition hold.

One of the main goals in this work is to provide sufficient conditions to ensure the ex-
istence of a valley with attractor. This definition of valley is local in the sense that it only
describes the behaviour of the Markov process in the basin. Accordingly, in Theorems 2.3
and 2.6 stated below we provide sufficient conditions for a triple to be a valley which do not
involve the transition rates between states in Bc .

Given a sequence of Markov processes {ηN
t : t ≥ 0} with values in EN , we might observe

a complex landscape of valleys with a wide variety of depths. We turn now to describe the
inter-valley dynamics.

Fix a finite number of disjoint subsets E 1
N, . . . ,E κ

N , κ ≥ 2, of EN : E x
N ∩ E y

N = ∅, x �= y.
Let EN =⋃

x∈S E x
N and let �N = EN \ EN so that

EN = E 1
N ∪ . . . ∪ E κ

N︸ ︷︷ ︸
EN

∪�N. (2.6)

Denote by �N : EN 	→ S = {1,2, . . . , κ}, the projection given by

�N(η) =
∑

x∈S

x 1{η ∈ E x
N }

and let

Ĕ x
N := EN \ E x

N , E x = (E x
N : N ≥ 1) and Ĕ x = (Ĕ x

N : N ≥ 1).

For a subset A of EN , let S A
t be the generalized inverse of the additive functional T A

t

introduced in the beginning of this section:

S A
t (e·) := sup{s ≥ 0 : T A

s (e·) ≤ t}.
It is clear that S A

t < +∞ for every t ≥ 0 if, and only if, T A
t → +∞ as t → +∞. To circum-

vent the case S A
t = ∞, add an artificial point d to the subset A. For any path e· ∈ D(R+,EN)

starting at e0 ∈ A, denote by eA
· the trace of the path e· on the set A defined by eA

t = eSA
t

if

SA
t < +∞, and eA

t = d otherwise. Clearly, if eA
t = d for some t , then eA

s = d, for every s > t .
Denote by {ηEN

t : t ≥ 0} the EN ∪ {d}-valued Markov process obtained as the trace of
{ηN

t : t ≥ 0} on EN , and by {XN
t : t ≥ 0} the stochastic process defined by XN

t = �N(η
EN
t )

whenever η
EN
t ∈ EN and XN

t = d otherwise. Clearly, besides trivial cases, {XN
t : t ≥ 0} is not

Markovian.
Let θ = (θN : N ≥ 1) denote a sequence of positive numbers and, for each x ∈ S, let

ξ x = (ξN
x : N ≥ 1) be a point in E x . In order to describe the asymptotic behaviour of the
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Markov process on the time-scale θ we use a Markov process {Px : x ∈ S} defined on the
canonical path space D(R+, S).

Definition 2.2 Tunneling A sequence of Markov processes {ηN
t : t ≥ 0}, N ≥ 1, on a count-

able state space E = (EN : N ≥ 1) exhibits a tunneling behaviour on the time-scale θ ,
with metastates {E x : x ∈ S}, metapoints {ξ x : x ∈ S} and asymptotic Markov dynamics
{Px : x ∈ S} if, for each x ∈ S,

(M1) The point ξ x is an attractor on E x in the sense that

lim
N→∞

inf
η∈Ex

N

Pη[Tξx
< TĔx ] = 1;

(M2) For every point η = (ηN : N ≥ 1) in E x , the law of the speeded up process
{XN

tθN
: t ≥ 0} under PηN converges to Px as N ↑ ∞;

(M3) For every t > 0,

lim
N→+∞

sup
η∈Ex

N

Eη

[∫ t

0
1{ηN

sθN
∈ �N }ds

]

= 0.

Let � denote the sequence (�N : N ≥ 1) and consider the triple (E x,E x ∪ �, ξ x) for a
fixed x in S. Clearly, if x is not an absorbing state for the asymptotic Markov dynamics, the
triple (E x,E x ∪ �, ξ x) is a valley of depth of the order of θ .

In particular, whereas the concept of valley provides the time-scale at which the Markov
process escapes from a well, the definition of tunneling provides the probability distribution
according to which, after escaping from a well, the next well to be visited is chosen.

We postpone further discussions on finer points about valleys and tunneling to Sects. 3
and 4 and turn to the statements of the main results in this paper.

2.2 The Positive Recurrent Case

The purpose of this subsection is to provide sufficient conditions to ensure the existence of a
valley and to prove tunneling. Assume from now on that, for any N ≥ 1, the Markov process
{ηN

t : t ≥ 0} is irreducible and positive recurrent, and denote by μN its unique invariant prob-
ability measure. It follows from these hypotheses that the holding rates λN(η) = −RN(η,η)

are strictly positive, and that the discrete time Markov chain on EN which jumps from η to
ξ with probability RN(η, ξ)/λN(η) is irreducible and recurrent.

Furthermore, for every η ∈ EN and A ⊆ EN , the additive functional T A
t applied to the

Markov process diverges almost surely. Consequently, the trace of the Markov process {ηN
t :

t ≥ 0} on the set A, denoted by {ηA
t : t ≥ 0}, is well defined and takes values in A. In fact,

we prove in Proposition 6.1 that the trace {ηA
t : t ≥ 0} is an irreducible and positive recurrent

Markov process with invariant probability measure equal to the measure μN conditioned on
the set A.

Consider two sequences of sets W and B satisfying (2.5). To keep notation simple, let
�N = BN \ WN , � = (�N : N ≥ 1), and EN = WN ∪ Bc

N , E = (EN : N ≥ 1). Denote by

RE
N(η, ξ), η, ξ ∈ EN, η �= ξ,
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the transition rates of the Markov process {ηEN
t : t ≥ 0}, the trace of {ηN

t : t ≥ 0} on EN . Let
RW

N : WN → R+ be the rate at which the trace process jumps to Bc
N :

RW
N (η) :=

∑

ξ∈Bc
N

RE
N(η, ξ),

and let rN(W ,Bc) be the average of RW
N over WN with respect to the measure μN condi-

tioned on WN :

rN(W ,Bc) := 1

μN(W)

∑

η∈WN

RW
N (η)μN(η)

= 1

μN(W)

∑

η∈WN

∑

ξ∈Bc
N

RE
N(η, ξ)μN(η),

(2.7)

where we write μN(W) := μN(WN), for N ≥ 1.
Next theorem presents sufficient conditions for W and B to be the well and the basin of

a valley with attractor.

Theorem 2.3 Assume that there exists a point ξ = (ξN : N ≥ 1) in W such that for every
point η = (ηN : N ≥ 1) in W ,

lim
N→∞

EηN

[∫ Tξ

0
RW

N (ηN
s )1{ηN

s ∈ WN }ds

]

= 0, (2.8)

lim
N→∞

rN(W ,Bc)EηN [Tξ (W)] = 0 (2.9)

and

lim
N→∞

rN(W ,Bc)EηN [TBc (�)] = 0. (2.10)

Then, (W ,B, ξ) is a valley with depth θ = (θN : N ≥ 1) where θN = 1/rN(W ,Bc), N ≥ 1.

Conditions (2.8) and (2.9) clearly follow from the stronger condition

lim
N→∞

sup{RW
N (η) : η ∈ WN }EηN [Tξ ] = 0.

The proof of this theorem is given in Sect. 5.
To state sufficient conditions for a tunneling behaviour, recall the partition (2.6). Let RE

N :
EN ×EN → R+ be the transition rates of the trace process {ηEN

t : t ≥ 0}, let R
x,y

N : E x
N → R+,

x, y ∈ S, x �= y, be the rate at which the trace process jumps to the set Ey

N :

R
x,y

N (η) :=
∑

ξ∈E
y
N

RE
N(η, ξ),

and let Rx
N : E x

N → R+, x ∈ S, be the rate at which it jumps to the set Ĕ x
N : Rx

N =∑
y �=x R

x,y

N .
Observe that Rx

N coincides with RW
N if (WN,BN) = (E x

N ,E x
N ∪ �N).
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Denote by rN(E x,E y) the expectation of R
x,y

N on E x with respect to the measure μN

conditioned on E x
N :

rN(E x,E y) := 1

μN(E x
N)

∑

η∈Ex
N

R
x,y

N (η)μN(η) (2.11)

and let

rN(E x, Ĕ x
N ) =

∑

y �=x

rN(E x,E y).

To guarantee that the process {ηN
t : t ≥ 0} exhibits a tunneling behavior, we first require

that each subset {E x : x ∈ S} satisfies conditions (2.8) and (2.9): For each x ∈ S, there exists
a point ξ x = (ξN

x : N ≥ 1) in E x such that

lim
N→∞

EηN

[∫ Tξx

0
Rx

N(ηN
s )1{ηN

s ∈ E x
N }ds

]

= 0 (C1)

and

lim
N→∞

rN(E x, Ĕ x)EηN [Tξx
(E x)] = 0 (C2)

for every point η = (ηN : N ≥ 1) in E x .

Theorem 2.4 Suppose (C1), (C2) and that there exists a sequence θ = (θN : N ≥ 1) of
positive numbers such that, for every pair x, y ∈ S, x �= y, the following limit exists

r(x, y) := lim
N→∞

θN rN(E x,E y). (H0)

Then, properties (M1) and (M2) of tunneling hold on the time-scale θ , with metastates
{E x : x ∈ S}, metapoints {ξ x : x ∈ S} and asymptotic Markov dynamics characterized by the
rates r(x, y), x, y ∈ S.

In Sect. 4.2 we discuss some criteria to check property (M3) of tunneling. The proof of
Theorem 2.4 is given in Sect. 5.

Remark 2.5 Notice that in the previous theorem we might get
∑

x∈S\{x0}
r(x, x0) = 0 and

∑

x∈S\{x0}
r(x0, x) > 0

for some x0 ∈ S. In this case, the triple (E x0 ,E x0 ∪ �, ξ x0
) turns out to be an inaccessible

valley, as it is illustrated in Example 3.5, even tough it has the same depth than all the other
wells involved in the tunneling.

2.3 The Reversible Case, Potential Theory

In addition to the positive recurrent assumption, let us now further assume that μN is a
reversible probability measure and that

∑

η∈EN

λN(η)μN(η) < ∞, ∀N ≥ 1. (2.12)
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In this case, we may list simple conditions, all of them expressed in terms of capacities
and the reversible measure μN , which ensure the existence of valleys and the tunneling
behaviour. We derive these results from Theorems 2.3 and 2.4 stated in the previous section
and the use of potential theory for reversible Markov processes.

As we have already seen, we need good estimates for the mean of entry times. In the re-
versible case, the mean of an entry time has a simple expression involving capacities that we
define below. Consider the finite measure MN(η) := λN(η)μN(η), η ∈ EN . For two disjoint
subsets A, B of EN define

CN(A,B) := {f ∈ L2(MN) : f (η) = 1 ∀ η ∈ A and f (ξ) = 0 ∀ ξ ∈ B}.
Let 〈·, ·〉μN

stand for the scalar product in L2(μN). Denote by DN the Dirichlet form asso-
ciated to the generator LN :

DN(f ) := 〈−LNf,f 〉μN
,

for every f in L2(MN). An elementary computation shows that

DN(f ) = 1

2

∑

η,ξ∈EN

μN(η)RN(η, ξ) {f (ξ) − f (η)}2.

The capacity of two disjoint subsets A, B of EN is defined as

capN(A,B) := inf{DN(f ) : f ∈ CN(A,B) }.
Fix two sequences of sets W and B satisfying (2.5). Given a point ξ ∈ W define

capN(ξ) := inf{capN(η, ξN) : η ∈ WN \ {ξN }}, (2.13)

and capN(ξ) = ∞ if WN \{ξN } = ∅. In addition, denote μN(W) := μN(WN), μN(B \ W) =
μN(BN \ WN) and capN(W ,Bc) := capN(WN,Bc

N).

Theorem 2.6 Assume that

lim
N→∞

capN(W ,Bc)

capN(ξ)
= 0 (2.14)

holds for some point ξ = (ξN : N ≥ 1) in W and that

lim
N→∞

μN(B \ W)

μN(W)
= 0. (2.15)

Then, for all points ζ in W , (W ,B, ζ ) is a valley of depth μN(W)/capN(W ,Bc), N ≥ 1.

Assumption (2.14) is also powerful in the context of tunneling.

Theorem 2.7 Suppose that for each x ∈ S, there exists a point ξ x = (ξN
x : N ≥ 1) in E x

such that

lim
N→∞

capN(E x, Ĕ x)

capN(ξ x)
= 0. (H1)

Suppose, furthermore, that (H0) holds for some θ = (θN : N ≥ 1). Then, for any points {ζ x ∈
E x : x ∈ S}, properties (M1) and (M2) of tunneling hold on the time-scale θ , with metastates
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{E x : x ∈ S}, metapoints {ζ x : x ∈ S} and asymptotic Markov dynamics characterized by the
rates r(x, y), x, y ∈ S.

If in addition we have that (M3) holds for each x ∈ S which is an absorbing state of the
Markov dynamics determined by the rates r and that

lim
N→∞

μN(�)

μN(E x)
= 0, (H2)

for each non-absorbing state x ∈ S, then property (M3) holds for every x ∈ S.

Remark 2.8 In the previous theorem, we may replace condition (M3) for absorbing states
and condition (H2) for non-absorbing states by the assumption

lim
N→∞

1

θN rN(E x, Ĕ x)

μN(�)

μN(E x)
= 0 (H2′)

for all states x.

Note that conditions (H2) and (H2′) are equivalent for non-absorbing states if (H0) holds.
The last two theorems and Remark 2.8 are proved in Sect. 5.

Remark 2.9 In contrast with valleys, to prove tunneling, one needs to check condition (H0),
which seems to be difficult. Nevertheless, the mean rates rN(E x,E y) can be expressed in
terms of capacities. We prove in Lemma 6.8, μN(E x)rN(E x,E y) can be written as

1

2
{ capN(E x, Ĕ x) + capN(E y, Ĕ y) − capN(E x ∪ E y, E \ (E x ∪ E y)) }

for every x, y ∈ S, x �= y.

3 Comments, Extensions and Examples

We present in this section some simple examples to justify the definitions of the previous
section and to illustrate some unexpected phenomena which may occur. We also extend the
notions of tunneling and valley.

3.1 Valleys

We start with a general remark concerning valleys on fixed state spaces. Consider a sequence
of Markov processes {ηN

t : t ≥ 0} on some given countable space E with generator LN

described by (2.1). Denote by λN(η) =∑
ξ �=η RN(η, ξ) the rate at which the process leaves

the state η. Clearly, the triple ({η}, {η}, η) is a valley of depth λN(η)−1 in the sense of
Definition 2.1.

We now examine condition (V1). In Lemma 3.1 below we prove that conditions (V1),
(V2) imply that the attractor ξ is reached from any point in the well W faster than θN :

lim
N→∞

sup
η∈WN

Pη

[
1

θN

Tξ > δ

]

= 0. (V1′)

Conversely, this condition and (V2) warrant the validity of (V1). We may therefore replace
(V1) by (V1′) in the definition of valley.
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Lemma 3.1 In Definition 2.1, condition (V1) may be replaced by condition (V1′).

Proof Let us denote by �t := �N
t , t ≥ 0, the time-shift operators on the path space

D(R+,EN). Let (W ,B, ξ) be a valley of depth θ = (θN : N ≥ 1). Fix a point η = (ηN : N ≥
1) in W as the starting point. Consider the pair of random variables Tξ , TBc ◦ �Tξ

, which
are independent by the strong Markov property. According to assumption (V1), the event
{Tξ < TBc } has asymptotic probability equal to one. On this event Tξ + TBc ◦ �Tξ

= TBc .

Since, by assumption (V2), θ−1
N TBc converges to a mean one exponential random variable,

θ−1
N {Tξ + TBc ◦ �Tξ

} also converges to a mean one exponential random variable.
Suppose by contradiction that there exist δ, ε > 0 such that

lim sup
N→∞

PηN

[ 1

θN

Tξ > δ
]

= ε. (3.1)

By assumptions (V1), (V2), θ−1
N (TBc ◦ �Tξ

) converges to a mean one exponential random

variable and, by (3.1), θ−1
N Tξ > δ with strictly positive probability. In particular, θ−1

N {Tξ +
TBc ◦ �Tξ

} may not converge to an exponential random variable, in contradiction with the
conclusion reached above.

Conversely, the event {Tξ < TBc } contains the event {Tξ < δθN } ∩ {TBc > δθN } for every
δ > 0. By assumptions (V1′), (V2), the PηN

-probability of this event converges to 1 as N ↑
∞ and then δ ↓ 0. This concludes the proof of the lemma. �

This first example illustrates the fact that conditions (V2), (V3) may hold while (V1)
fails. In this example, with probability converging to one, the process, starting from one
state in the well W , leaves the basin B at an exponential time before hitting the attractor ξ .

Example 3.2 Consider the Markov process on {0,1,2,3} with rates given by

RN(1,0) = RN(2,3) = 1 − (1/N), RN(1,2) = RN(2,1) = 1/N,

and RN(i, j) = 0 otherwise.

Consider the triple ({1,2}, {1,2},1). It is clear that condition (V1) does not hold since
the process starting from 2 reaches Bc = {0,3} before hitting 1 with probability 1 − (1/N).
Condition (V2) is fulfilled for θ = 1 because TBc converges to a mean one exponential time,
independently from the starting point, and condition (V3) is in force by default. By the same
reason ({1,2}, {1,2},2) is not a valley.

Essentially, states in {1,2} become far from each other at the escaping time-scale. Hence,
any sort of thermalization in {1,2} before leaving the basin is discarded. The exponential
distribution observed for the escaping time is only due to a coincidence in the individual
rates of escaping from {1,2}. We thus impose condition (V1) (or equivalently (V1′)) to
avoid including this situation within the concept of valley.

In the second example we present a triple which fulfills condition (V1), (V3) but not
(V2). There, the order of magnitude of the time needed for the process to reach Bc from W
depends on the starting point of W .

Example 3.3 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E = {0,1,2} with

rates given by

RN(1,0) = N − 1, RN(1,2) = 1, RN(2,1) = N−1, RN(0,1) = N2,



Tunneling and Metastability of Continuous Time Markov Chains 1077

and RN(j, k) = 0 otherwise.

The triple ({1,2}, {1,2},2) is not a valley because condition (V1) is violated. With prob-
ability converging to one the process starting from 1 leaves the set {1,2} before reaching 2.
The triple ({1,2}, {1,2},1) is not a valley either. While conditions (V1), (V3) are clearly
satisfied, it is not difficult to show that condition (V2) is violated. In fact, starting from 1,
TBc converges to a mean one exponential random variable, while starting from 2, N−1TBc

converges to a mean one exponential random variable. It is also clear that condition (V1′)
fails in this case since on the scale of order 1 the process starting from 2 never reaches 1.

Next example highlights the role of condition (V3) in preventing some evanescent sets
to be called wells. The Markov process presented in Example 3.4 fulfills conditions (V1),
(V2) but not condition (V3).

Example 3.4 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E = {−1,0,1}

with rates given by

RN(−1,0) = RN(1,0) = N, RN(0,−1) = RN(0,1) = 1,

and RN(j, k) = 0 otherwise.

Obviously, we do not wish the triple ({−1}, {−1,0},−1) to be a valley. Nevertheless,
this triple satisfies conditions (V1) and (V2) of Definition 2.1. The first one is satisfied by
default. To check the second one, note that starting from −1

TB̆ =
M∑

j=1

{Sj + S ′
j },

where {Sj : j ≥ 1}, {S ′
j : j ≥ 1} are independent sequences of i.i.d. exponential random

variables of parameter N , 1, respectively, and M is geometric random variable of parameter
1/2, independent of the sequences. Hence, (1/2) TBc converges in distribution, as N ↑ ∞,
to a mean 1 exponential random variable.

It is condition (V3) which prevents the triple ({−1}, {−1,0},−1) to be a valley since the
time spent at 0 before reaching {−1,1} is a mean 1/2 exponential random variable.

3.2 Metastates

Let {E x : x ∈ S} be metastates and {ξ x : x ∈ S} be metapoints in the tunneling behaviour of a
sequence of Markov processes. We have already pointed out that if x ∈ S is not an absorbing
state for the asymptotic Markov dynamics, then the triple (E x,E x ∪�, ξx) is a valley. It may
happen however that the triple (E x,E x ∪ �, ξx) is an inaccessible valley in the sense that
once the process escapes from E x it never returns to E x . This is illustrated in the following
example.

Example 3.5 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E = {1, . . . ,5}

with rates given by

RN(j, k) = 1 if j is even, k odd and |j − k| = 1,

RN(1,2) = RN(3,4) = RN(5,4) = N−1, RN(3,2) = N−2,

RN(j, k) = 0 otherwise.
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The triples ({1}, {1,2},1), ({3}, {3,4},3), ({5}, {4,5},5) are valleys of depth 2N . More-
over, at the time scale N the process exhibits a tunneling behaviour with metastates
E1 = {1}, E 2 = {3}, E 3 = {5} and asymptotic Markov dynamics characterized by the rates
r(1,2) = r(2,3) = r(3,2) = 1/2, r(i, j) = 0, otherwise. Note that the metastate E1 is in-
accessible in the sense that r(2,1) + r(3,1) = 0. This means that in the time scale N the
process starting from 1 eventually leaves this state, never to return.

In contrast, if x ∈ S is an absorbing metastate in the tunneling description not much
information is available on the triple (E x,E x ∪ �, ξ x).

We may use Example 3.3 to present a case in which an absorbing metastate is not a valley.
At the scale N−2 the process exhibits a tunneling behaviour, with metastates E 1 = {0} and
E 2 = {1,2}, ξ 2 = 1, and asymptotic Markov dynamics characterized by the rates r(1,2) = 1,
r(2,1) = 0. Thus, E 2 = {1,2} is an absorbing metastate which is not a valley due to the
existence of the well {2} in the set E 2 of depth N � N−2.

The following example, provided by one of the referees, also shows a non trivial behav-
iour inside an absorbing metastate, but in this case at the same time-scale of tunneling.

Example 3.6 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E = {1, . . . ,6}

with rates given by

RN(2,1) = RN(2,3) = RN(5,4) = RN(5,6) = 1,

RN(3,4) = RN(4,3) = RN(1,2) = RN(6,5) = N−1,

RN(3,2) = RN(4,5) = N−2,

and RN(j, k) = 0 otherwise.

At time scale N the process exhibits tunneling behaviour with metastates E1 = {1}, E 2 =
{3,4} and E 3 = {6}, and asymptotic Markov dynamics characterized by the rates r(1,2) =
1/2, r(3,2) = 1/2, r(i, j) = 0 otherwise. However, inside the absorbing metastate E2 =
{3,4} the process switches between the two states at the tunneling time-scale N .

3.3 Metastability and Single Well Valleys

The definition of tunneling examines the inter-valley dynamics between valleys with depths
of the same order until the process falls in an absorbing metastate. It is far from a global
description since it does not exclude the possibility that � contains a landscape of valleys
of depths of larger order than θ , the tunneling time-scale. This situation will be illustrated
in Example 3.11 below. We have also pointed out that if x is an absorbing state for the
asymptotic Markov dynamics, the set E x may also contain a landscape of valleys of larger
order depth.

In order to exclude these eventualities, we impose more restrictive conditions in the de-
finition of metastability. We replace (M1) by (M1′) to ensure that there are no wells in E x

of depth of order θ if x is an absorbing point for the asymptotic Markov dynamics; and we
replace (M3) by (M3′) to avoid wells in � of depth of order θ or larger.

Definition 3.7 Metastability A sequence of Markov processes {ηN
t : t ≥ 0}, N ≥ 1, on a

countable state space E = (EN : N ≥ 1) exhibits a metastable behaviour on the time-scale
θ , with metastates {E x : x ∈ S}, metapoints {ξ x : x ∈ S} and asymptotic Markov dynamics
{Px : x ∈ S}, if for each x ∈ S,
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(M1′) The point ξ x is an attractor on E x in the sense that for every δ > 0

lim
N→∞

sup
η∈Ex

N

Pη

[
Tξx

> δθN

] = 0;

(M2) For every point η = (ηN : N ≥ 1) in E x , the law of the speeded up process {XN
tθN

:
t ≥ 0} under PηN converges to Px as N ↑ ∞;

(M3′) For every t > 0,

lim
N→+∞

sup
η∈EN

Eη

[ ∫ t

0
1{ηN

sθN
∈ �N }ds

]
= 0.

It follows from (M3′) that � is evanescent in the sense that for every δ > 0,

lim
N→∞

sup
η∈�N

Pη

[
TEN

> δθN

] = 0. (3.2)

In Example 3.5 we observed tunneling for the sequence of Markov processes at the time-
scale N and with metastates E 1 = {1}, E 2 = {3}, E 3 = {5}. It is in fact a metastable behav-
iour.

Let us recall Example 3.3 to show a tunneling situation in which condition (M3′) holds
but not (M1′). At the scale N−2 the process exhibits a tunneling behaviour, with metastates
E 1 = {0} and E 2 = {1,2}, ξ 2 = 1. It does not exhibit a metastable behaviour, as described in
Definition 3.7, because condition (M1′) is violated. Starting from state 2 ∈ E 2, the process
never reaches the attractor 1 in the time scale N−2. Condition (M3′) is fulfilled by default.

On the other hand, we refer to Example 3.11 below to observe a sequence of Markov
processes with the opposite properties. It fulfills conditions (M1′), (M2), (M3) but violates
assumption (M3′).

The same line of remarks lead naturally to a more restrictive definition of valley.

Definition 3.8 S-Valley The triple (W ,B, ξ) is a S-valley of depth θ and attractor ξ for the
Markov process {ηN

t : t ≥ 0} if, for every point η = (ηN : N ≥ 1) in W , assumptions (V1)
and (V2) are fulfilled and, for every δ > 0,

lim
N→∞

sup
η∈BN

Pη

[ 1

θN

TBc (�) > δ
]

= 0. (V3′)

As in property (3.2) of metastability, it follows from condition (V3′) that the process
starting from � immediately reaches W ∪ Bc: For every δ > 0,

lim
N→∞

sup
η∈�N

Pη

[ 1

θN

TW∪Bc > δ
]

= 0. (3.3)

Next example shows that conditions (V1), (V2) and (3.3) do not imply (V3). In this
example, there is a state in the annulus � which immediately jumps to the well W , but
which is visited several times before leaving the basin B.

Example 3.9 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E = {1,2,3} with

rates given by RN(1,2) = N , RN(2,1) = N − 1, R(2,3) = 1 and RN(i, j) = 0 otherwise.
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Let ξ = 1, W = {1} and B = {1,2}. Condition (V1) is fulfilled by default. Condition
(V2) is easily checked for θN = 2. In fact, the hitting time T N

3 of 3 starting from 1 can be
written as

∑
1≤j≤M{Sj + S ′

j }, where {Sj : j ≥ 1}, {S ′
j : j ≥ 1} are independent sequences

of i.i.d. mean 1/N exponential random variables and M is a geometric random variable
of parameter 1/N , independent of both sequences. It follows from this representation that
T N

3 /2 converges in distribution to a mean 1 exponential random variable.
For similar reasons, conditions (V3) fails: With the notation just introduced, starting from

1, the time spent at state 2 before hitting 3, denoted in Sect. 2 by T N
3 ({2}), converges to a

mean 1 exponential random variable.
Condition (3.3), however, is in force, since the hitting time of the set {1,3} starting from

2 is of order 1/N .

3.4 Depth and Time-Scales

The depth of a valley is defined up to an equivalence relation: if θ ′ = (θ ′
N : N ≥ 1) is another

sequence of positive numbers such that limN→∞(θN/θ ′
N) = 1, the valley has also depth θ ′.

Also remark that depth has not an intrinsic character, in contrast with valleys, in the sense
that it changes if we speed up or slow down the underlying Markov process.

Furthermore, the depth of a valley depends on the basin. As we shall see in the next
example, two different valleys (W ,B, ξ), (W ,B ′, ξ), with B ⊂ B ′, may have depths of
different order.

Example 3.10 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E = {−1,0,1}

with rates given by

RN(−1,0) = RN(1,0) = 1, RN(0,−1) = RN(0,1) = N,

and RN(j, k) = 0 otherwise.

By the observation of the beginning of this section, the triple ({−1}, {−1},−1) is a valley
of depth 1. On the other hand, the triple ({−1}, {−1,0},−1) is a valley of depth 2. Condition
(V1) is satisfied by default, and condition (V2) can be verified by representing the time
needed to reach Bc as a geometric sum of independent exponential random variables, as in
Example 3.4. Requirement (V3) is readily checked.

The same sequence of Markov processes may have distinct tunneling behaviors at differ-
ent time scales. Next example is very instructive in this respect. In this example, on one time
scale there is an isolated point in the asymptotic Markov dynamics. In longer time scales
this metastate is reached by other metastates, previous metastates coalesce in one larger
metastate, and a new tunneling picture emerges. This example also highlights the role of
conditions (M3′) and (V3′) introduced in definitions of metastability and S-valley.

Example 3.11 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on E = {1, . . . ,5}

with rates given by

RN(j, k) = 1 if j is even, k odd and |j − k| = 1,

RN(1,2) = N−2, RN(3,2) = N−3, RN(3,4) = RN(5,4) = N−1,

RN(j, k) = 0 otherwise.
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A simple computation shows that the measure mN on E given by mN(1) = N2, mN(2) =
1, mN(3) = N3, mN(4) = N2, mN(5) = N3 is reversible for the Markov process. We leave
to the reader to check that ({3}, {3,4},3), ({5}, {4,5},5) are valleys of depth 2N , and
that ({1}, {1,2},1), ({3,4,5}, {3,4,5},3), ({3,4,5}, {2,3,4,5},3) are valleys of depth 2N2,
2N3, 4N3, respectively. The presence of valleys of different depths leads to diverse tunnel-
ing behaviors at different time scales.

At the scale N one observes a tunneling between E 1 = {3} and E 2 = {5}, characterized
by the asymptotic Markov rates r(1,2) = r(2,1) = 1/2. Assumption (M3′) is not satisfied
because the set �N contains a well of depth larger than the depth of the metastates. However,
this well is never visited if the process starts from one of the metastates.

To turn the tunneling behavior into a metastable one, we may add the metastate E3 =
{1} and show that at scale N , the process exhibits a metastable behaviour with metastates
E 1 = {3}, E 2 = {5}, E 3 = {1} and asymptotic Markov dynamics characterized by the rates
r(1,2) = r(2,1) = 1/2, r(i, j) = 0, otherwise. Observe that an isolated state has appeared
in the asymptotic dynamics.

At scale N2, the metastates E 1 = {3}, E 2 = {5} coalesce into one deeper well. In this
scale the process exhibits the metastable behaviour with metastates E1 = {1}, E 2 = {3,4,5},
and asymptotic Markov dynamics characterized by the rates r(1,2) = 1/2, r(2,1) = 0. Note
that we have here an absorbing asymptotic state and that {3,4,5} is not the well of a valley
of depth of order N2, but the well of a valley of depth of order N3.

This example also illustrates that we may have valleys satisfying conditions (V1), (V2)
and (V3), but not (V3′) and (3.3). This is the case of the triple ({3}, {1,2,3, 4},3). The
latter conditions are violated because the annulus {1,2,4} contains the valley ({1}, {1,2},1)

of depth 2N2, larger than 2N which is the depth of ({3}, {3,4},3). On the scale N , the
process starting from 1 never reaches 3 with positive probability. However, condition (V3)
holds because on the scale N the process starting from 3 never reaches {1,2}. However,
transferring the points 1, 2 from � to Bc , we transform the valley ({3}, {1,2,3,4},3) in the
S-valley ({3}, {3,4},3).

3.5 Attractors

The existence of an attractor imposed in condition (V1) of Definition 2.1 is a very strong
condition which is not fulfilled in several models, for instance, the contact process studied
in [27]. Let us exhibit a simple example of a valley without attractor. Denote by EN =
(Z/NZ)d ∪ (Z/NZ)d the union of two d-dimensional torus of length N and denote by
(x, j), x ∈ (Z/NZ)d , j = ±1, the elements of EN .

Example 3.12 Consider the sequence of Markov processes {ηN
t : t ≥ 0} on EN with rate

jumps given by

RN((x, j), (x ′, j)) = 1

2d
1{|x − x ′| = 1}, RN((x, j), (x,−j)) = 1

θN

,

for some rate θN such that N2 � θN � Nd , and RN((x, i), (y, j)) = 0 otherwise.

It is well known that the spectral gap of the symmetric simple random walk on the torus
(Z/NZ)d is of order N−2. The evolution of the process ηN

t is therefore quite clear. In a time
scale of order N2, the process thermalizes in the torus where it started from, and after an
exponential time of order θN it jumps to the other torus, replicating there the same qualitative
behavior.
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Hence, each torus satisfies all reasonable conditions to be qualified as a valley of
depth θN . However, there is no attractor in this example since a specific state is visited
by the symmetric simple random walk only in the time scale Nd .

The existence of attractors could be replaced by weaker requisites as, for instance, on
the total variation distance between the state of the process and stationary measures for the
dynamics restricted to the well W . Nevertheless, in several non trivial examples, as in the
case of condensed zero-range processes [3] which motivated this paper, attractors do exist.

4 Additional Statements

In this section we prove some results on valleys and on tunneling in the setting of Sect. 2.1,
in particular, without any further assumptions as recurrence or reversibility.

4.1 Valleys

Next lemma is needed in the proof of Proposition 4.2, one of the main results of this section.

Lemma 4.1 Consider a subset A = (AN : N ≥ 1) of (EN : N ≥ 1). Assume that there exists
t > 0 and ε < 1 such that

lim sup
N→∞

sup
η∈WN

Pη

[
TA > tθN

]
< ε. (4.1)

Then, supη∈WN
Eη[TA(W)] ≤ [t/(1 − ε)]θN for every N sufficiently large and

lim
K→∞

lim sup
N→∞

sup
η∈WN

Eη

[
θ−1
N TA(W)1{TA(W) > KθN }

]
= 0. (4.2)

Proof The proof is a simple consequence of the strong Markov property and Assump-
tion (4.1). Consider the sequence of stopping times {Ik : k ≥ 1}, {Jk : k ≥ 1} defined as
follows. I1 = 0, J1 = tθN ,

Ik+1 = inf
{
t > Jk : ηN

t ∈ WN

}
, Jk+1 = Ik+1 + tθN , k ≥ 1,

with the convention that Jk = Ik+1 = ∞ if Ik = ∞ for some k ≥ 1. Let M be the first time
interval [Ik, Jk] in which the process visits AN :

M = min
{
k ≥ 1 : ηN

t ∈ AN for some t ∈ [Ik, Jk] or Ik = ∞}
.

Clearly, TA(W) ≤ tθNM . On the other hand, for N sufficiently large, by definition of the
stopping times {Ik : k ≥ 1} and by Assumption (4.1), M is stochastically dominated by a
random variable M ′ with geometric distribution given by P [M ′ = k] = (1 − ε)εk−1, k ≥ 1.
This concludes the proof of the lemma. �

Next proposition gives an equivalent definition of a valley with attractor.

Proposition 4.2 Assume that (W ,B, ξ) is a valley of depth θ and attractor ξ . Then, for any
point η = (ηN : N ≥ 1) in W ,
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(i) The hitting time of the attractor ξ is negligible with respect to the escape time from the
basin B in the sense that

lim
N→∞

EηN [Tξ (W)]
EηN [TBc (W)] = 0;

(ii) Under PηN , the law of the random variable TBc (W)/EηN [TBc (W)] converges to a
mean-one exponential distribution;

(iii) For every δ > 0,

lim
N→∞

PηN

[ TBc (�)

EηN [TBc (W)] > δ
]

= 0.

Moreover, the sequences θN and EηN [TBc (W)] are asymptotically equivalent in the sense
that limN→∞ θ−1

N EηN [TBc (W)] = 1.
Conversely, if (W ,B, ξ) is a triple satisfying (2.5) for which (i)–(iii) hold, then for any

point η = (ηN : N ≥ 1) in W , the sequence EηN [TBc (W)] is asymptotically equivalent to
EξN [TBc (W)]:

lim
N→∞

EηN [TBc (W)]
EξN [TBc (W)] = 1;

and (W ,B, ξ) is a valley of depth θ , where θN = EξN [TBc (W)].

It is implicit in the statement of this proposition that the time spent in the well W before
leaving the basin B, TBc (W), has finite expectation with respect to any PηN for sufficiently
large N , as well as the time spent in the well W before reaching the attractor ξ , Tξ (W).

Proof of Proposition 4.2 Assume that (W ,B, ξ) is a valley of depth θ and attractor ξ . We
first claim that

lim
N→∞

sup
η∈WN

Eη

[
θ−1
N Tξ (W)

] = 0. (4.3)

This assertion follows from (V1′) and the previous lemma with A = {ξ}, t = δ, ε = 1/2.
Fix a point η = (ηN : N ≥ 1) in W . We claim that

lim
N→∞

EηN

[
θ−1
N TBc (W)

] = 1. (4.4)

Three ingredients are needed to prove this result. The convergence of θ−1
N TBc to a mean

one exponential random variable, a bound on EηN [θ−1
N TBc (W)] provided by the previous

lemma, and the fact that the process does not spend too much time in �.
We start with the proof of the lower bound. Fix δ > 0, t > 0. On the set {TBc (�) ≤ δθN },

we have that TBc (W) ≥ TBc − δθN . Therefore,

TBc (W) ≥ −δθN + TBc 1{TBc (�) ≤ δθN }.

Replacing TBc by min{TBc , tθN } we obtain the estimate

TBc (W) ≥ −δθN − tθN 1{TBc (�) > δθN } + min{TBc , tθN }

which holds for all δ > 0, t > 0.
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By (V3), the expectation with respect to PηN of the second term on the right hand side
divided by θN vanishes as N ↑ ∞ for any fixed δ > 0, t > 0. By (V2), the expectation with
respect to PηN of the third term on the right hand side divided by θN converges to 1 as
N ↑ ∞ and then t ↑ ∞. Therefore,

lim inf
N→∞

EηN

[
θ−1
N TBc (W)

] ≥ 1.

The proof of the upper bound is simpler. For every A > 0,

EηN

[
TBc (W)

] ≤ EηN

[
min{TBc ,AθN }] + EηN

[
TBc (W)1{TBc (W) > AθN }].

By (V2), the first term on the right hand side divided by θN converges to 1 as N ↑ ∞ and
then A ↑ ∞. By (V2), (4.1) holds with A = Bc , ε = 1/2 and some t < ∞. Therefore, by
(4.2), the second term divided by θN vanishes as N ↑ ∞ and then A ↑ ∞. This concludes
the proof of (4.4).

Assertion (i) follows from (4.3) and (4.4), and assertion (iii) from (V3) and (4.4). Finally,
TBc (W) = TBc − TBc (�). By (V2), θ−1

N TBc converges in distribution to a mean one expo-
nential random variable, and, by (V3), θ−1

N TBc (�) converges to 0 in probability. Assertion
(ii) follows from these facts and from (4.4). The final claim of the first part of the proposition
has been proved in (4.4).

To prove the converse, suppose that conditions (i)–(iii) hold. We first prove that (V1),
(V2), (V3) are in force with θN replaced by the sequence θ(ηN) = EηN [TBc (W)], which
depends on the point η = (ηN : N ≥ 1). In this case, condition (V3) corresponds to (iii). To
prove (V2), note that TBc = TBc (W) + TBc (�). By (ii), θ(ηN)−1TBc (W) converges in dis-
tribution to a mean one exponential random variable and, by (iii), θ(ηN)−1TBc (�) vanishes
in probability. Therefore, (V2) holds. Finally, on the set {Tξ < TBc }, Tξ = Tξ (W) + Tξ (�)

and Tξ (�) ≤ TBc (�). By (i) and (iii), θ(ηN)−1Tξ (W) and θ(ηN)−1TBc (�) vanish in prob-
ability as N ↑ ∞. On the other hand, by (V2), already proved, θ(ηN)−1TBc converges in
distribution to a mean one exponential variable. This proves (V1).

It remains to show that the sequences θ(ηN) = EηN [TBc (W)] and EξN [TBc (W)] are as-
ymptotically equivalent in the sense that their ratio converges to 1.

By (ii) and Lemma 4.1, the sequence θ(ηN)−1TBc (W) is uniformly integrable with re-
spect to PηN . Therefore, by (V1),

lim
N→∞

1

θ(ηN)
EηN [TBc (W)1{Tξ < TBc }] = 1.

By the strong Markov property and the explicit form of TBc (W), the expectation is equal to

1

θ(ηN)
EηN [Tξ (W)1{Tξ < TBc }] + 1

θ(ηN)
EξN [TBc (W)]PηN [Tξ < TBc ].

By (i), the first term vanishes as N ↑ ∞. Since by (V1) PηN [Tξ < TBc ] converges to 1,
EηN [TBc (W)] and EξN [TBc (W)] are asymptotically equivalent. This concludes the proof of
the proposition. �

4.2 Tunneling

We start proving that tunneling may be defined without referring to trace processes. Indeed,
consider the S-valued stochastic process X̂N

t defined as

X̂N
t = �N(ηN

σ(t)),
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where σ(t) := sup{s ≤ t : ηN
s ∈ EN }. Note that X̂N

t is well defined whenever ηN
t starts from

a point in EN . Then, we claim that

Proposition 4.3 In condition (M2) of Definitions 2.2, 3.7, we may replace the stochastic
process {XN

tθN
: t ≥ 0} by {X̂N

tθN
: t ≥ 0}.

In order to prove this statement, let us first fix a metric in the path space D(R+, S ∪ {d})
which induces the Skorohod topology. In what follows, we identify the point d with 0 ∈ Z

so that S ∪ {d} is a metric space with the metric induced by Z.
For each integer m ≥ 1, let 
m denote the class of strictly increasing, continuous map-

pings of [0,m] onto itself. If λ ∈ 
m, then λ0 = 0 and λm = m. In addition, consider the
function

gm(t) =
⎧
⎨

⎩

1 if t ≤ m − 1,

m − t if m − 1 ≤ t ≤ m,

0 if t ≥ m.

For any integer m ≥ 1 and e, ê ∈ D(R+, S ∪ {d}), define dm(e, ê) to be the infimum of those
positive ε for which there exists in 
m a λ satisfying

sup
t∈[0,m]

|λt − t | < ε

and

sup
t∈[0,m]

|gm(λt ) eλt − gm(t) êt | < ε.

Finally, we define the metric in D(R+, S ∪ {d}) by

d(e, ê) =
∞∑

m=1

2−m(1 ∧ dm(e, ê)).

This metric induces the Skorohod topology in the path space D(R+, S ∪ {d}) (cf. [2]).
For any path e ∈ D(R+, S ∪{d}) denote by (τn(e) : n ≥ 0) the sequence of jumping times

of e: Set τ0(e) = 0 and, for n ≥ 1, we define τn(e) as

τn(e) := inf{t > τn−1(e) : et �= eτn−1(e)},
with the convention that τn = ∞ if τn−1 = ∞ and, as usual, inf ∅ = +∞.

Now, Proposition 4.3 is a consequence of the following result. To keep notation simple,
for the remaining of this section we denote by XN and X̂N the speeded up processes {XN

tθN
:

t ≥ 0} and {X̂N
tθN

: t ≥ 0}, respectively.

Proposition 4.4 Suppose that {ηN
t : t ≥ 0}, N ≥ 1, satisfies (M3) for any x ∈ S. Then, for

any x ∈ S and point η = (ηN : N ≥ 1) in E x ,

lim
N→∞

EηN

[
d(XN, X̂N)

] = 0.

Proof Fix arbitrary integers m ≥ 1 and N ≥ 1. To keep notation simple, set τn := τn(X
N)

and τ̂n := τn(X̂
N), n ≥ 0. Define the random variables

n := sup{j ≥ 0 : τ̂j < m}
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and

T (XN) := τn+1 ∧ m.

In Lemma 4.5 below we show that PηN -a.s.,

dm(XN, X̂N) ≤ |S| max
{
τ̂n − τn; m − T (XN)

}
. (4.5)

To estimate the right hand side in (4.5), observe that

τ̂n − τn =
∫ τ̂n

0
1{ηN

sθN
∈ �N }ds ≤

∫ m

0
1{ηN

sθN
∈ �N }ds.

On the other hand, in the case τn+1 < m, m − T (XN) can be written as m − {τ̂n + [τn+1 −
τn]} + [τ̂n − τn]. Since τ̂n − τn is the time spent by {ηN

tθN
: t ≥ 0} in �N in the time interval

[0, τ̂n] and m − {τ̂n + [τn+1 − τn]} is the time spent in �N in the time interval [τ̂n,m],

m − T (XN) ≤
∫ m

0
1{ηN

sθN
∈ �N }ds := T �N

m .

Therefore, by (4.5) we have just shown that

d(XN, X̂N) ≤
∞∑

m=1

2−m
(

1 ∧ |S|
∫ m

0
1{ηN

sθN
∈ �N }ds

)
.

The desired result follows from this estimate and property (M3). �

Lemma 4.5 For any integers N,m ≥ 1, (4.5) holds PηN -almost surely.

Proof Fix two integers N,m ≥ 1. All assertions in what follows must be understood in the
PηN -a.s. sense. Recall the notation introduced in the previous lemma.

Let us list some evident properties of XN and X̂N : First notice that for all 0 ≤ j ≤ n − 1,
we have τ̂j+1 − τ̂j ≥ τj+1 − τj and XN

sθN
= X̂N

tθN
for (s, t) ∈ [τj , τj+1[×[τ̂j , τ̂j+1[. Further-

more, τn < T (XN) ≤ m, XN
τn

�= d and XN
sθN

= X̂N
tθN

for (s, t) ∈ [τn, T (XN)[×[τ̂n,m[.
In particular, since τ̂n < m, we may choose ε > 0 small enough such that τn < T (XN) −

ε and τ̂n < m − ε. Now, let λ ∈ 
m be given by: λτ̂j = τj , for j ≤ n, λm−ε = T (XN) − ε,
λm = m and we complete λ on [0,m] by linear interpolation. Then,

sup
t∈[0,m]

|λt − t | ≤ max{τ̂n − τn,m − T (XN)}.

Moreover, since λt ≤ t , 0 ≤ t ≤ m,

sup
t∈[0,m−ε]

∣
∣gm(λt )X

N
λt θN

− gm(t)X̂N
tθN

∣
∣ ≤ |S| sup

t∈[0,m−ε]
|gm(λt ) − gm(t)|

≤ |S| sup
t∈[m−1,m−ε]

|λt − t |

and

sup
t∈[m−ε,m]

∣
∣gm(λt )X

N
λt θN

− gm(t)X̂N
tθN

∣
∣ ≤ |S| sup

t∈[m−ε,m]

( |gm(λt ) − gm(t)| + 2|gm(t)| )

≤ |S| sup
t∈[m−ε,m]

|λt − t | + 2|S|ε.
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Since ε may be taken arbitrary small, the claim is proved. �

In Theorem 2.4 we provided sufficient conditions to ensure properties (M1) and (M2) of
tunneling. The following two statements may be used in order to check property (M3).

Let {ηN
t : t ≥ 0} be a sequence of Markov processes and suppose that property (M2)

in Definition 2.2 is satisfied. Denote by S∗ ⊂ S the subset of non-absorbing states for
{Px : x ∈ S}. We claim that for the states in S∗ we may replace requirement (M3) by property
(V3) of valley, namely: For each x ∈ S∗,

lim
N→∞

sup
η∈Ex

N

Pη

[
1

θN

TĔx (�) > δ

]

= 0, ∀δ > 0. (C3)

This is the content of the following proposition.

Proposition 4.6 Assume that (M2) is fulfilled for a sequence of Markov processes
{ηN

t : t ≥ 0}, N ≥ 1. If (M3) is satisfied for each x ∈ S \ S∗ and if (C3) holds for any
x ∈ S∗, then (M3) is in force for any x ∈ S.

Proof For every e ∈ D(R+, S ∪ {d}), denote by Jt (e) the number of jumps up to time t :

Jt (e) := sup{j ≥ 0 : τj (e) ≤ t}.
Fix an arbitrary non-absorbing state x∗ ∈ S for the Markov process {Px : x ∈ S}, a point
η = (ηN : N ≥ 1) in E x∗ and a time t > 0. Let us denote

T N :=
∫ t

0
1{ηN

sθN
∈ �N ds}, (4.6)

so that it suffices to show that EηN [T N ] → 0 as N → ∞.

Recall that XN and X̂N stand for the speeded up processes {XN
tθN

: t ≥ 0} and {X̂N
tθN

: t ≥
0}, respectively. For any integer K ≥ 1,

T N ≤ 1{Jt (X̂
N) ≥ K} t + 1{Jt (X̂

N) < K}T N, (4.7)

PηN -almost surely. The subset {Jt ≥ K} ⊆ D(R+, S ∪ {d}) is closed for the Skorohod topol-
ogy. Therefore, by property (M2),

lim sup
N→∞

PηN [Jt (X̂
N) ≥ K] ≤ lim sup

N→∞
PηN [Jt (X

N) ≥ K] ≤ Px∗ [Jt ≥ K].

The right hand side vanishes as K ↑ ∞. From this and (4.7), it follows that

lim sup
N→∞

EηN [T N ] ≤ lim sup
K↑∞

lim sup
N→∞

EηN [1{Jt (X̂
N) < K}T N ].

In consequence, in order to conclude the proof it is enough to show that

lim
N→∞

EηN [1{Jt (X̂
N) = i}T N ] = 0, ∀i ≥ 0. (4.8)

Fix some integer i ≥ 0. To keep notation simple, denote Ĵt := Jt (X̂
N) and let (τ̂n : n ≥ 0)

stand for the jumping times of X̂N . Recall that we denote by S∗ the set of non-absorbing
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states for {Px : x ∈ S} and set E∗
N =⋃

x∈S∗ E x
N . On the event {Ĵt = i} let us define

I := inf
{
0 ≤ j ≤ i : X̂N

τ̂j θN
∈ S \ S∗

}
,

so that I = ∞ if and only if X̂sθN
∈ S∗, for all 0 ≤ s ≤ t . On the one hand, PηN −a.s.,

1{Ĵt = i; I = ∞}T N ≤ 1{Ĵt = i; I = ∞}
i+1∑

j=1

∫ τ̂j ∧t

τ̂j−1

1{ηN
sθN

∈ �N }ds

≤
i+1∑

j=1

1{ηN
τ̂j−1θN

∈ E∗
N }

∫ τ̂j ∧t

τ̂j−1

1{ηN
sθN

∈ �N }ds.

Thus, applying the strong Markov property we get

EηN

[
1{Ĵt = i; I = ∞}T N

] ≤ (i + 1) sup
x∈S∗

sup
η∈Ex

N

EN
η

[
t ∧ (

θ−1
N TĔx (�)

)]
.

The right hand side vanishes as N ↑ ∞ by assumption (C3) for the non-absorbing states.
On the other hand, for any 0 ≤ � ≤ i we have that, PηN −a.s., on the event {Ĵt = i; I = �},

T N ≤
�∑

j=1

∫ τ̂j ∧t

τ̂j−1

1{ηN
sθN

∈ �N }ds +
∫ τ̂�+t

τ̂�

1{ηN
sθN

∈ �N }ds.

By applying the strong Markov property as before, we show that EηN [1{Ĵt = i; I = �}T N ]
is bounded above by

� sup
x∈S∗

sup
η∈Ex

N

EN
η

[
t ∧ (

θ−1
N TĔx (�)

)] + sup
x∈S\S∗

sup
η∈Ex

N

EN
η

[
T N

]
.

As N ↑ ∞, the first term vanishes as before while the second one vanishes by assumption
(M3) for absorbing states. This concludes the proof. �

We arrive to the same conclusion in Proposition 4.6 if we assume instead that (C3) holds
for every state x ∈ S. This is the content of Lemma 4.7 below. Actually, for an absorbing
state x ∈ S \ S∗, property (C3) is stronger than (M3) because in this case θ−1

N TĔx diverges.
The following version of Proposition 4.6 does not distinguish between absorbing and non-
absorbing states.

Lemma 4.7 Assume that (M2) is fulfilled for a sequence of Markov processes {ηN
t : t ≥ 0},

N ≥ 1. Then, condition (M3) is satisfied if for each x in S,

lim
N→∞

sup
η∈Ex

N

Pη

[ 1

θN

TĔx (�) > δ
]

= 0, ∀δ > 0.

Proof The proof is simpler than the previous one. We do not need to introduce the variable I .
We estimate T N in (4.6) as in the case I = ∞ to get that

EηN

[
1{Ĵt = i}T N

] ≤ (i + 1) sup
x∈S

sup
η∈Ex

N

EN
η

[
t ∧ (

θ−1
N TĔx (�)

)]
.

This expression vanishes as N ↑ ∞ by assumption. �



Tunneling and Metastability of Continuous Time Markov Chains 1089

5 Proof of the Main Theorems

We prove in this section the main results of the article. The proofs rely on some results on
recurrent Markov processes presented in Sect. 6.

5.1 Proof of Theorem 2.3

Next statement plays a central role in the proof of Theorem 2.3.

Proposition 5.1 Consider two sequences of sets W and B satisfying (2.5). Assume that
there exists a point ξ = (ξN : N ≥ 1) in W such that for every point η = (ηN : N ≥ 1) in
W (2.8) and (2.9) hold. Then, condition (V1) is in force. Moreover, the law of rN(W ,Bc)

TBc (W) under PηN converges to a mean-one exponential distribution, as N ↑ ∞, and

lim
N→∞

rN(W ,Bc)EηN

[
TBc (W)

] = 1 (5.1)

for any point η = (ηN : N ≥ 1) in W .

The proof of this proposition is divided in several lemmas. Recall that EN = WN ∪ Bc
N ,

N ≥ 1, and that {ηEN
t : t ≥ 0} stands for the trace of {ηN

t : t ≥ 0} on EN . For any θ = (θN :
N ≥ 1), properties (2.8) and (2.9) hold for {ηEN

t : t ≥ 0} if and only if they do so for the
speeded up process {ηEN

θN t : t ≥ 0}. Furthermore, condition (V1) remains invariant by any
re-scale of time, while (5.1) and the assertion preceding it are implied by the corresponding
claims for {ηEN

θN t : t ≥ 0}. In consequence, speeding up the process appropriately, we may
assume in Proposition 5.1 that

rN(W ,Bc) = 1 ∀N ≥ 1 (5.2)

and condition (2.9) becomes

lim
N→∞

sup
η∈WN

Eη[Tξ (W)] = 0. (5.3)

To prove the last two assertions of Proposition 5.1, we show that the law of TBc (W) under
PηN converges to a mean-one exponential distribution and that

lim
N→∞

EηN [TBc (W)] = 1. (5.4)

We identify the trace process {ηEN
t : t ≥ 0} with the first marginal of the EN ×

{0,1}−valued Markov process {(ηEN
t ,XN

t ) : t ≥ 0} defined as follows. To keep notation sim-
ple, let x̆ = 1 − x, x = 0,1. The transition rates for {(ηEN

t ,XN
t ) : t ≥ 0} are the following:

• From each (η, x) ∈ WN × {0,1}, the process jumps to (ξ, x) (resp. to (ξ, x̆)) with rate
RE

N(η, ξ) for any ξ ∈ WN (resp. for any ξ ∈ Bc
N ).

• From each (η, x) ∈ Bc
N × {0,1}, the process jumps to (ξ, x) with rate RE

N(η, ξ), for any
ξ ∈ EN .

Let P(η,x), (η, x) ∈ EN ×{0,1}, be the probability measure on D(R+,EN ×{0,1}) induced
by the Markov process {(ηEN

t ,XN
t ) : t ≥ 0} starting from (η, x). Hence, for any starting point

(η, x) ∈ EN × {0,1}, the law of the marginal {ηEN
t : t ≥ 0} on D(R+,EN) under P(η,x) is Pη .
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By Proposition 6.3, the conditioned probability measure μE
N( · ) := μN( · |EN) is the in-

variant probability measure for the trace process {ηEN : t ≥ 0}. Define the probability mea-
sure on EN × {0,1} by

mN(η, x) = (1/2)μE
N(η), for (η, x) ∈ EN × {0,1}.

We may check that mN is an invariant probability measure for {(ηEN
t ,XN

t ) : t ≥ 0}. In par-
ticular, {(ηEN

t ,XN
t ) : t ≥ 0} is positive recurrent.

Clearly, for any η ∈ WN , the law of TBc (W) under Pη coincides with the law of the first
jump

inf
{
t > 0 : XN

t �= XN
0

}

under P(η,x), for any x ∈ {0,1}. Hence, to prove that TBc (W) converges to a mean one ex-
ponential law it is enough to show that the second coordinate of the trace of the process
{(ηEN

t ,XN
t ) : t ≥ 0} on WN × {0,1}, denoted by {XWN

t : t ≥ 0}, converges to a Markov
process on {0,1} which jumps from x to 1 − x at rate 1. This is done in two steps. After
having shown that the sequence of processes {XWN

t : t ≥ 0} is a tight family, we characterize
in Lemma 5.6 all limit points by showing that they solve a martingale problem. Both state-
ments rely on a replacement result, stated in Lemma 5.5, which allows the substitution of a
function by its conditional expectation.

Conditions (2.8) and (5.3) imply that

lim
N→∞

sup
η∈WN

Eη

[∫ Tξ (E)

0

{
RW

N (ηEN
s ) + 1

}
1
{
ηEN

s ∈ WN

}
ds
]

= 0, (5.5)

where Tξ (E) = T N
ξ (E) := inf{t ≥ 0 : η

EN
t = ξN }. As a consequence of (5.5), we get the

following lemma.

Lemma 5.2 For every t > 0,

lim
N→+∞

sup
η∈EN

∣
∣
∣Eη

[∫ t

0

(
RW

N (ηEN
s ) − 1

)
1
{
ηEN

s ∈ WN

}
ds
]∣
∣
∣ = 0.

Proof Recall the notation introduced in Sect. 6.2. Let g : EN → R be given by g(η) =
RW

N (η)1{η ∈ WN } so that the expectation of g with respect to μE
N is equal to μN(WN)/

μN(EN) in view of (5.2). Consider the partition π = {WN,Bc
N } of EN and note that the

conditional expectation 〈g|π〉μE
N

= 1{η ∈ WN }. Since g is integrable with respect to μE
N , the

statement follows from (5.5) and Corollary 6.5 applied to the process {ηEN
t : t ≥ 0}. �

We use this lemma to show tightness for the sequence {XN
t : t ≥ 0}.

Lemma 5.3 Fix an arbitrary point η = (ηN : N ≥ 1) in W and z ∈ {0,1}. For each N ≥ 1,
denote by QN the law of {XN

t : t ≥ 0} under P(ηN ,z). Then the sequence of laws (QN : N ≥ 1)

is tight.

Proof For each T > 0, let TT denote the set of all stopping times bounded by T . By Aldous
criterion (see Theorem 16.10 in [2]) we just need to show that

lim
δ↓0

lim sup
N→∞

sup
θ≤δ

sup
τ∈TT

P(ηN ,z)

[ |XN
τ+θ − XN

τ | > ε
] = 0 (5.6)
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for every ε > 0 and T > 0. Denote by LE
N the generator of (η

EN
t ,XN

t )t≥0 and by p : EN ×
{0,1} → {0,1} the projection on the second coordinate. Consider the martingale

MN
t := XN

t − XN
0 −

∫ t

0
(LE

N p)(ηEN
s ,XN

s ) ds .

It is therefore enough to show that (5.6) holds with XN
τ+θ − XN

τ replaced by MN
τ+θ − MN

τ

and by
∫ τ+θ

τ
(LE

N p)(η
EN
s ,XN

s ) ds.
Consider the integral term. By Chebyshev inequality and by the strong Markov property,

we need to prove that

lim
δ↓0

lim sup
N→∞

sup
θ≤δ

sup
(η,x)∈EN ×{0,1}

E(η,x)

[ ∫ θ

0

∣
∣
∣ (LE

N p)(ηEN
s ,XN

s )

∣
∣
∣ds

]

= 0,

where E(η,x) stands for the expectation with respect to P(η,x). A simple computation provides

(LE
N p)(η, x) = {x̆ − x}RW

N (η)1
{
η ∈ WN

}
.

The proof is thus reduced to the claim

lim
δ↓0

lim sup
N→∞

sup
η∈EN

Eη

[∫ δ

0
RW

N (ηEN
s )1

{
ηEN

s ∈ WN

}
ds

]

= 0. (5.7)

Since the expectation above is less than or equal to

∣
∣
∣
∣Eη

[∫ δ

0

(
RW

N (ηEN
s ) − 1

)
1
{
ηEN

s ∈ WN

}
ds

]∣
∣
∣
∣ + δ,

the limit (5.7) follows from Lemma 5.2.
We now turn to the martingale part {MN

t : t ≥ 0}, whose quadratic variation is given by

〈M〉Nt =
∫ t

0

{
LE

N(p2) − 2pLE
N p

}
(ηEN

s ,XN
s ) ds

=
∫ t

0
RW

N (ηEN
s )1

{
ηEN

s ∈ WN

}
ds.

By Chebyshev inequality

P(ηN ,z)

[ |MN
τ+θ − MN

τ | > ε
] ≤ 1

ε2
E(ηN ,z)

[ 〈M〉Nτ+θ − 〈M〉Nτ
]
.

Finally, by the explicit formula for the quadratic variation and by the strong Markov prop-
erty, the right hand side above is less than or equal to

1

ε2
sup
η∈EN

Eη

[∫ δ

0
RW

N (ηEN
s )1

{
ηEN

s ∈ WN

}
ds

]

.

It remains to use (5.7). �

As a consequence of Lemma 5.3 we obtain condition (V1) for the triple (W ,W , ξ) with
respect to the trace process {ηEN

t : t ≥ 0}.
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Lemma 5.4 For any point η = (ηN : N ≥ 1) in W ,

lim
N→+∞

PηN [Tξ (W) < TBc (W) ] = 1.

Proof Fix ηN in WN , N ≥ 1. Consider the modified uniform modulus of continuity ω′
δ :

D(R+, {0,1}) → R+ given by

ω′
δ(x·) := inf

{ti }
max
0≤i<r

sup
ti≤s<t<ti+1

∣
∣xt − xs

∣
∣,

where the first infimum is taken over all partitions {ti : 0 ≤ i ≤ r} of the interval [0,1] such
that

{
0 = t0 < t1 < · · · < tr = T

ti − ti−1 > δ, for i = 1, . . . , r.

By the previous lemma (see e.g. Theorem 1.3 in Chapter 4 of [21]),

lim
δ↓0

lim sup
N→+∞

P(ηN ,0)

[
ω′

δ(X
N
· ) = 1

] = 0.

Therefore, since for all δ > 0 {TBc (W) ≤ δ} ⊂ {ω′
δ(X

N
· ) = 1} P(ηN ,z)–almost surely,

lim
δ↓0

lim inf
N→+∞

PηN

[
TBc (W) > δ

] = 1. (5.8)

On the other hand, by (5.3), we have

lim
N→+∞

PηN [Tξ (W) > δ ] = 0 (5.9)

for any δ > 0. The desired result follows from (5.9) and (5.8). �

Actually, since {Tξ (W) < TBc (W)} ⊆ {Tξ < TBc }, Lemma 5.4 proves condition (V1) for
the triple (W ,B, ξ) with respect to the process {ηN

t ; t ≥ 0}: For any point η = (ηN : N ≥ 1)

in W ,

lim
N→+∞

PηN [Tξ < TBc ] = 1.

We now consider the trace of {(ηEN
t ,XN

t ) : t ≥ 0} on WN × {0,1}, denoted by
{(ηWN

t ,X
WN
t ) : t ≥ 0}. As we shall see in Sect. 6, since {(ηEN

t ,XN
t ) : t ≥ 0} is positive

recurrent, the trace process {(ηWN
t ,X

WN
t ) : t ≥ 0} is positive recurrent as well. Moreover,

the invariant probability measure for the trace process, denoted by mW
N , coincides with mN

conditioned to WN × {0,1}:

m
W
N (η, x) := (1/2)μW

N (η), for (η, x) ∈ WN × {0,1}.

The marginal process {ηWN
t : t ≥ 0} corresponds to the trace of {ηEN

t : t ≥ 0} on WN .
Let LW

N denote the Markov generator of {(ηWN
t ,X

WN
t ) : t ≥ 0}. Define, in addition, the

Markov generator L as

LF(x) := F(x̆) − F(x), x ∈ {0,1}, (5.10)
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for every F : {0,1} → R. For each N ≥ 1, let p = pN be the projection function on the
second coordinate p : WN × {0,1} → {0,1}. If RW

N (·, ·) stands for the transition rates of
{(ηWN

t ,X
WN
t ) : t ≥ 0}, we have that

LW
N (F ◦ p)(η, x) = {F(x̆) − F(x)}

∑

ξ∈WN

RW
N

(
(η, x), (ξ, x̆)

)

for any (η, x) ∈ WN ×{0,1}. By applying Corollary 6.2 to the Markov process {(ηEN
t ,XN

t ) :
t ≥ 0} and its trace on WN × {0,1}, we get that

∑

ξ∈WN

RW
N

(
(η, x), (ξ, x̆)

) = RW
N (η)

for all (η, x) ∈ WN × {0,1}. Therefore, by (5.2), the conditional expectation of LW
N (F ◦ p),

under mW
N , given the σ -field generated by the partition

WN × {0,1} = (WN × {0}) ∪ (WN × {1}), (5.11)

is (LF) ◦ p. Therefore, applying Corollary 6.11 to the trace process {(ηWN
t ,X

WN
t ) : t ≥ 0},

the function LW
N (F ◦p) and the partition (5.11), we obtain the following replacement lemma.

Lemma 5.5 For every x ∈ {0,1}, function F : {0,1} → R and time t > 0,

lim
N→∞

sup
η∈WN

∣
∣
∣
∣E(η,x)

[ ∫ t

0

{
LW

N (F ◦ p)(ηWN
s ,XWN

s ) − LF(XWN
s )

}
ds

] ∣
∣
∣
∣ = 0.

Proof Recall that the conditional expectation of LW
N (F ◦ p) is (LF) ◦ p. Since

|LW
N (F ◦ p)(η, x) − LF(x)| ≤ (RW

N (η) + 1)max{|F(0)|, |F(1)|},

in view of Corollary 6.5, to prove the lemma we just need to check that for any x ∈ {0,1},

lim
N→∞

sup
η∈WN

E(η,x)

[∫ TW
(ξ ,x)

0
(RW

N (ηWN
s ) + 1)1{XWN

s = x}ds

]

= 0, (5.12)

where, for each N ≥ 1,

TW
(ξ ,x) = TW

(ξ ,x)(N) := inf{t ≥ 0 : (ηWN
t ,X

WN
t ) = (ξN , x)}.

Fix an arbitrary x ∈ {0,1}. It follows from conditions (2.8) and (5.3) that

lim
N→∞

sup
η∈WN

Eη

[∫ Tξ (W)

0
(RW

N (ηWN
s ) + 1) ds

]

= 0. (5.13)

To keep notation simple, let us denote

TN :=
∫ TW

(ξ ,x)

0
(RW

N (ηWN
s ) + 1)1{XWN

s = x}ds.
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Since, for any η ∈ W , {Tξ (W) < TBc (W)} ⊆ {Tξ (W) = TW
(ξ ,x)} P(η,x)-almost surely then by

(5.13) and Chebyshev inequality we have that

lim
N→∞

sup
η∈WN

P(η,x)[TN > t, Tξ (W) < TBc (W) ] = 0, (5.14)

for every t > 0. From this limit and Lemma 5.4 we conclude that

lim
N→∞

sup
η∈WN

P(η,x)[TN > t ] = 0, ∀t > 0. (5.15)

By the strong Markov property, (5.15) and the arguments presented in the proof of
Lemma 4.1,

lim
A→∞

lim sup
N→∞

sup
η∈WN

E(η,x)[TN 1{TN > A} ] = 0 .

Hence, by Lemma 5.4,

lim sup
N→∞

sup
η∈WN

E(η,x)[TN 1{Tξ (W) ≥ TBc (W)} ] = 0. (5.16)

On the other hand,

E(η,x)[TN 1{Tξ (W) < TBc (W)} ] ≤ Eη

[∫ Tξ (W)

0
(RW

N (ηWN
s ) + 1) ds

]

.

Therefore, (5.12) follows from this estimate, (5.13) and (5.16). �

We now prove the convergence in law of {XWN
t : t ≥ 0} as N ↑ ∞. Fix an arbitrary point

η = (ηN : N ≥ 1) in W . For each N ≥ 1, denote by PN the law of {XWN
t : t ≥ 0} under

P(ηN ,0). Following the same argument presented in the proof of Lemma 5.3 we can show
that (PN : N ≥ 1) is tight.

The uniqueness of limit points for this sequence is established as follows. Assume
without loss of generality that PN → P, as N → ∞, for some probability measure P on
D(R+, {0,1}). For t ≥ 0, let Xt denote the time-projection Xt : D(R+, {0,1}) → {0,1}. We
shall prove in the following lemma that P solves the martingale problem associated to the
generator L defined in (5.10). It is well known that this property together with the distribu-
tion of X0, characterize the measure P.

Lemma 5.6 Under P, X0 = 0 a.s. and

MF
t = F(Xt) − F(X0) −

∫ t

0
LF(Xs) ds, for t ≥ 0,

is a martingale for any function F : {0,1} → R.

Proof The first claim is trivial. For the last one, fix 0 ≤ s < t , a function F : {0,1} 	→ R

and a bounded function U : D(R+, {0,1}) 	→ R depending only on {Xr : 0 ≤ r ≤ s} and
continuous for the Skorohod topology. Denote by E and EN the expectation with respect to
P and PN , respectively. We shall prove that

E
[
MF

t U
] = E

[
MF

s U
]
. (5.17)
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Recall that LW
N denotes the generator of {(ηWN

t ,X
WN
t ) : t ≥ 0}. For N ≥ 1, consider the

P(ηN ,0)-martingale {MN
t : t ≥ 0}, defined by

MN
t = F(X

WN
t ) − F(0) −

∫ t

0
LW

N (F ◦ p)(ηWN
s ,XWN

s ) ds, t ≥ 0.

Denote UN := U(XWN· ). As {MN
t : t ≥ 0} is a martingale,

E(ηN ,0)

[
MN

t UN
] = E(ηN ,0)

[
MN

s UN
]

so that

E(ηN ,0)

[

UN

{

F(X
WN
t ) − F(XWN

s ) −
∫ t

s

LW
N (F ◦ p)(ηWN

r ,XWN
r ) dr

}]

= 0.

On the other hand, since UN is bounded and Fs -measurable, it follows from the Markov
property and Lemma 5.5 that

lim
N→∞

E(ηN ,0)

[

UN

∫ t

s

{
LW

N (F ◦ p)(ηWN
r ,XWN

r ) − LF(XWN
r )

}
dr

]

= 0.

Putting the last two assertions together we get

lim
N→∞

EN

[

U

{

F(Xt) − F(Xs) −
∫ t

s

LF(Xr) dr

}]

= 0. (5.18)

Now, since PN converges to P, time averages of EN

[
F(Xt)U

]
and EN

[
F(Xs)U

]
converge

to time averages of E
[
F(Xt)U

]
and E

[
F(Xs)U

]
, respectively. Hence, from this last obser-

vation and (5.18) it follows that

1

ε

∫ ε

0
dr E

[

U

{

F(Xt+r ) − F(Xs+r ) −
∫ t+r

s+r

LF(Xs)

}]

= 0

for every ε > 0. It remains to let ε ↓ 0 and use the right continuity of the process to deduce
(5.17), which concludes the proof of the lemma. �

Under P, {Xt : t ≥ 0} is therefore a Markov chain on {0,1} with generator L and starting
at 0. We have thus shown that, the law of

TBc (W) = inf
{
t > 0 : XWN

t = 1
}
,

under P(ηN ,0), converges to a mean-one exponential distribution. To conclude the proof of
Proposition 5.1 it remains to check (5.4). By Lemma 5.4 and the convergence in law of
TBc (W), (W ,W , ξ) is a valley for the trace process {ηEN

t : t ≥ 0} with depth 1. Therefore,
applying item (ii) of Proposition 4.2 to (W ,W , ξ) and {ηEN

t : t ≥ 0} we get (5.4). This
concludes the proof of Proposition 5.1 �

We are now in a position to prove Theorem 2.3. Condition (V1) follows from Proposi-
tion 5.1 and Condition (V3) from (2.10) and Chebyshev inequality. Condition (V2) follows
from (V3) and the convergence in law of rN(W ,Bc) TBc (W) stated in Proposition 5.1.



1096 J. Beltrán, C. Landim

5.2 Proof of Theorem 2.4

The proof of this result is divided in three lemmata. As in the proof of Proposition 5.1,
without loss of generality, we may assume that θN = 1, ∀N ≥ 1. In this way, condition (H0)

guarantees that, for every x, y ∈ S, x �= y,

lim
N→∞

rN(E x,E y) = r(x, y), (5.19)

and we shall prove the convergence in law of the sequence {XN
t : t ≥ 0}, N ≥ 0.

Clearly, conditions (C1) and (C2) imply

lim
N→∞

sup
η∈Ex

N

Eη

[∫ Tξx

0

{
Rx

N(ηEN
s ) + rN(E x, Ĕ x)

}
1{ηEN

s ∈ E x
N }ds

]

= 0 (5.20)

for any x ∈ S, where {ηEN
t : t ≥ 0} stands for the trace process of {ηt : t ≥ 0} on EN . Let us

define VN : EN 	→ R as

VN(η) :=
∑

x∈S

Rx
N(η)1{η ∈ E x

N }, η ∈ EN .

Let μE
N be the measure μN conditioned to EN and denote by V̂N the μE

N -conditional expec-
tation of VN given the σ -algebra generated by the partition EN =⋃

x∈S E x
N :

V̂N (η) :=
∑

x∈S

rN(E x, Ĕ x)1{η ∈ E x
N }, ∀η ∈ EN .

Since VN is integrable with respect to μE
N , it follows from Corollary 6.5 and from (5.20)

that, for any t > 0,

lim
N→∞

sup
η∈EN

∣
∣
∣
∣Eη

[∫ t

0

{
VN − V̂N

}
(ηEN

s ) ds

] ∣
∣
∣
∣ = 0. (5.21)

In order to prove (M2), fix some x ∈ S and a point η = (ηN : N ≥ 1) in E x . For each
N ≥ 1, denote by PN the law of {XN

t : t ≥ 0} under PηN . The convergence of the sequence
(PN : N ≥ 1) stated in (M2), follows from tightness and uniqueness of limit points. We first
examine the tightness.

Lemma 5.7 The sequence (PN : N ≥ 1) is tight.

Proof For each T > 0, let TT denote the set of all stopping times bounded by T . By Aldous
criterion (see Theorem 16.10 in [2]) we just need to show that

lim
δ↓0

lim
N→∞

sup
θ≤δ

sup
τ∈TT

PηN

[ |XN
τ+θ − XN

τ | > ε
] = 0 (5.22)

for every ε > 0 and T > 0.
Let LE

N be the generator of the trace process {ηEN
t : t ≥ 0} and let {MN

t : t ≥ 0} be the
martingale defined by

MN
t = XN

t − XN
0 −

∫ t

0
LE

N�N(ηEN
s ) ds.
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To prove tightness, it is therefore enough to show that (5.22) holds with the difference
XN

τ+θ − XN
τ replaced by MN

τ+θ − MN
τ and by

∫ τ+θ

τ
LE

NXN
s ds.

Consider the integral term. By Chebyshev inequality and by the strong Markov property,
we need to prove that

lim
δ↓0

lim
N→∞

sup
θ≤δ

sup
η∈EN

Eη

[ ∫ θ

0

∣
∣LE

N�N(ηEN
s )

∣
∣ds

]

= 0.

An elementary computation shows that

LE
N�N(η) =

∑

x,y∈S

{y − x}R
x,y

N (η)1{η ∈ E x
N },

for any η ∈ EN . Since |LE
N�N | ≤ κVN , the proof is reduced to the claim

lim
δ↓0

lim
N→∞

sup
η∈EN

Eη

[∫ δ

0
VN(ηEN

s )ds

]

= 0.

The left hand side can be written as

lim
δ↓0

lim
N→∞

sup
η∈EN

{

Eη

[∫ δ

0

{
VN − V̂N

}
(ηEN

s )ds

]

+ Eη

[∫ δ

0
V̂N (ηEN

s )ds

]}

.

The first term converges to zero as N ↑ ∞, for any δ > 0, by (5.21). The second term is
bounded above by

lim
δ↓0

lim
N→∞

δ
∑

x∈S

rN(E x
N , Ĕ x

N),

which is equal to zero by (5.19).
We now turn to the martingale part, whose quadratic variation, denoted by 〈MN 〉t , is

given by

〈MN 〉t =
∫ t

0

{
LE

N(�N)2(ηEN
s ) − 2XN

s (LE
N�N)(ηEN

s )
}
ds, t ≥ 0.

An elementary computation shows that this expression is equal to

∑

x,y∈S

{y − x}2 R
x,y

N (η)1{η ∈ E x
N }.

By the explicit formula for the quadratic variation, by Chebyshev inequality and by the
strong Markov property,

PηN

[ ∣
∣MN

τ+θ − MN
τ

∣
∣ > ε

] ≤ 1

ε2
EηN

[ 〈MN 〉τ+θ − 〈MN 〉τ
]

≤ κ2

ε2
sup
η∈EN

Eη

[∫ δ

0
VN(ηEN

s ) ds

]

.

It remains to repeat the arguments presented for the integral term of the decomposition. �
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Now we turn to the uniqueness of limit points. Assume without loss of generality that the
sequence PN converges to a measure P . Denote by LN and L the Markov generators on the
state space S = {1, . . . , κ} given by

(LNF)(x) =
∑

y∈S\{x}
{F(y) − F(x)}rN(E x,E y)

and

(LF)(x) =
∑

y∈S\{x}
{F(y) − F(x)} r(x, y).

For t ≥ 0, let Xt denote the projection D(R+, S) 	→ S. The probability P is completely
determined by the properties stated in the following lemma.

Lemma 5.8 Under P , X0 = x and

Mt = F(Xt) − F(X0) −
∫ t

0
LF(Xs) ds (5.23)

is a martingale for any function F : S 	→ R.

The proof of this lemma follows closely the one of Lemma 5.6. It suffices, in particular,
to show the following replacement lemma. Let LE

N stand for the generator of {ηEN
t : t ≥ 0}.

Lemma 5.9 For any t > 0,

lim
N→∞

sup
η∈EN

Eη

[∫ t

0

{
LE

N(F ◦ �N) − (LF) ◦ �N

}
(ηEN

s ) ds

]

= 0.

Proof First, by condition (H0), we have that

lim
N→∞

sup
η∈EN

Eη

[∫ t

0

{
(LNF)(XN

s ) − (LF)(XN
s )
}
ds

]

= 0.

It remains to prove that

lim
N→∞

sup
η∈EN

Eη

[∫ t

0

{
LE

N(F ◦ �N) − (LNF) ◦ �N

}
(ηEN

s ) ds

]

= 0. (5.24)

The μE
N -conditional expectation of LE

N(F ◦ �N) given the σ -algebra generated by the par-
tition EN =⋃

x∈S E x
N is (LNF) ◦ �N . The expectation of |LE

N(F ◦ �N) | with respect to μE
N

is bounded by C(F)
∑

x∈S rN(E x,E y) for some finite constant C(F), depending only on F ,
and, for any η ∈ EN , |LE

N(F ◦ �N)(η) − (LNF) ◦ �N(η)| is bounded above by

2 max
z∈S

|F(z)|
∑

x∈S

{
Rx

N(η) + rN(E x,E y)
}

1{η ∈ E x
N }.

By Corollary 6.5, applied to g = LE
N(F ◦ �N) and by (5.20), (5.24) holds, which concludes

the proof of the lemma. �

This concludes the proof of condition (M2). Condition (M1) follows from Proposi-
tion 5.1 with W = E x , B = E x ∪ �, which concludes the proof of Theorem 2.4. �
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5.3 Proof of Theorem 2.6

We assume in this subsection that the process is reversible and that (2.12) holds.
We adopt all notation introduced in Sect. 2.3. In this reversible context, the expressions

appearing in Theorems 2.3 and 2.4 can be computed by using capacities. Given two disjoint
subsets A,B ⊂ EN , denote by f N

AB : EN → R the function in CN(A,B) defined as

f N
AB(η) := Pη[TA < TB ].

In addition, for two points ξ = (ξN : N ≥ 1) and η = (ηN : N ≥ 1) in W , ηN �= ξN , N ≥ 1,
set fN(η, ξ) = f N

{ηN }{ξN } and capN(η, ξ) = capN({ηN }, {ξN }).
Consider two sequences of sets W and B satisfying (2.5). By (6.16) we have that,

EηN

[∫ Tξ

0
RW

N (ηN
s )1{ηN

s ∈ WN }ds

]

= 〈RW
N 1{WN }, fN(η, ξ) 〉μN

capN(η, ξ)
, (5.25)

EηN [Tξ (W)] = 〈1{WN }, fN(η, ξ) 〉μN

capN(η, ξ)
, (5.26)

and, by Lemma 6.7,

rN(W ,Bc) = capN(W ,Bc)

μN(W)
· (5.27)

In the last identity capN(W ,Bc) := capN(WN,Bc
N) and μN(W) := μN(WN). The previous

relations can be used to check conditions (2.8) and (2.9) in Theorem 2.3 as well as assump-
tions (C1) and (C2) in Theorem 2.4.

Furthermore, since 0 ≤ fN(η, ξ) ≤ 1, and since, by (2.7), 〈RW
N 1{WN }〉μN

=
μN(W)rN(W ,Bc), by (5.27),

EηN

[∫ Tξ

0
RW

N (ηN
s )1{ηN

s ∈ WN }ds

]

≤ capN(W ,Bc)

capN(ξ)

and rN(W ,Bc)EηN [Tξ (W)] ≤ capN(W ,Bc)

capN(ξ)
,

where capN(ξ) has been defined in (2.13). Hence, conditions (2.8) and (2.9) in Theorem 2.3
follow from the stronger condition (2.14).

The proof of Theorem 2.6 relies on the following result which states the important fact
that, under condition (2.14), the capacity between W and Bc is asymptotically equivalent to
the capacity between any point ζ of W and Bc .

Proposition 5.10 Consider two sequences of sets W and B satisfying (2.5). Assume that
condition (2.14) holds for some point ξ = (ξN : N ≥ 1) in W . Then, the assertions of Propo-
sition 5.1 are in force. Moreover, for every point ζ = (ζN : N ≥ 1) in W ,

lim
N→∞

capN(W ,Bc)

capN(ζ ,Bc)
= 1, (5.28)

and

lim
N→∞

inf
η∈WN

Pη[Tζ < TBc ] = 1. (5.29)
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Proof We have already observed that conditions (2.8) and (2.9) follow from (2.14). In par-
ticular, the assertions of Proposition 5.1 hold.

Fix an arbitrary point ζ = (ζN : N ≥ 1) in W . By (6.16) applied to {ηN }, g = 1{W},
{ξN }, and to {ξN }, g = 1{W}, {ζN }, for any η = (ηN : N ≥ 1) in W ,

EηN [Tζ (W) ] ≤ EηN [Tξ (W) ] + EξN [Tζ (W) ]

≤ μN(W)

capN(η, ξ)
1{ηN �= ξN } + μN(W)

capN(ζ , ξ)
1{ζN �= ξN }

≤ 2μN(W)

capN(ξ)
·

From this estimate, identity (5.27) and hypothesis (2.14), it follows that

lim
N→∞

rN(W ,Bc)EηN [Tζ (W) ] = 0,

which, by (5.1) in Proposition 5.1, implies that

lim
N→∞

EηN [Tζ (W) ]
EηN [TBc (W)] = 0. (5.30)

This limit corresponds to item (i) of Proposition 4.2 with the point ζ instead of ξ . Item (ii)
of Proposition 4.2 follows from the last two assertions of Proposition 5.1. From items (i)
and (ii) we conclude that (W ,W , ζ ) is a valley for the trace process {ηEN

t : t ≥ 0}. Hence,

lim
N→∞

PηN [Tζ (E) < TBc (E) ] = 1,

which implies condition (V1) for the triple (W ,Bc, ζ ) because {Tζ (E) < TBc (E)} ⊆ {Tζ <

TBc } PηN -a.s., proving (5.29).
By Proposition 6.10 with A = {η}, B = Bc and g = 1{W}, and by identity (5.27), the

limit (5.1) can be re-written as

lim
N→∞

〈1{WN }, fN(η,Bc)〉μN
capN(W ,Bc)

μN(W) capN(η,Bc)
= 1.

Replace η by ζ in this formula. By (5.29), the infimum of fN(ζ , Bc) over WN converges to
1 as N ↑ ∞. Therefore, (5.28) follows from this observation and the previous identity. �

We are now in a position to prove Theorem 2.6. We first show that (W ,B, ξ) is a valley
of depth θN = rN(W ,Bc)−1 = μN(W)/capN(W ,Bc). Identity (5.27) and Proposition 6.10
show that

rN(W ,Bc)EηN [TBc (�)] = 〈1{�N }, fN(η,Bc)〉μN
capN(W ,Bc)

μN(W) capN(η,Bc)
·

By Proposition 5.10, (5.28) holds. Since fN(η,Bc) is bounded by one, (5.28) along with
hypothesis (2.15) proves (2.10). Since (2.8) and (2.9) follow from (2.14), all the hypotheses
of Theorem 2.3 are fulfilled. Therefore, (W ,B, ξ) is a valley of depth θN = rN(W ,Bc)−1 =
μN(W)/capN(W ,Bc). Last identity follows from Lemma 6.7.

Fix now a point ζ in W . To prove that (W ,B, ζ ) is a valley, we check conditions (i)–
(iii) of Proposition 4.2. Property (i) has been proved in (5.30). Since (W ,B, ξ) is a valley,
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conditions (ii) and (iii) are in force due to the first part of Proposition 4.2. Hence, by the
second part of this proposition, (W ,B, ζ ) is a valley of depth EζN [TBc (W)]. Finally, since
(W ,B, ξ) is a valley, by the first part of this proposition, θN and EζN [TBc (W)] are asymp-
totically equivalent sequences.

5.4 Proof of Theorem 2.7

We need to check that all assumptions of Theorem 2.4 are satisfied. As in the proof of
Theorem 2.6, conditions (C1), (C2) follow from assumption (H1). By Proposition 4.6 it
remains to show that (C3) is fulfilled for all non-absorbing states. Fix such a state x ∈ S∗. It
is enough to prove that

lim sup
N→∞

sup
η∈Ex

N

1

θN

Eη

[
TĔx (�)

]
= 0. (5.31)

By Proposition 6.10 and since fηĔx is bounded by 1, the expectation is less than or equal

to μN(�)/capN(η, Ĕ x). By (5.28), we may replace asymptotically η by E x in the previous
capacity. By Lemma 6.7, cap(E x, Ĕ x) is equal to μN(E x)rN(E x, Ĕ x). In conclusion, we have
shown that

lim sup
N→∞

sup
η∈Ex

N

1

θN

Eη

[
TĔx (�)

]
≤ lim sup

N→∞
1

θN rN(E x, Ĕ x)

μN(�)

μN(E x)
· (5.32)

Since x is a non-absorbing point, by assumptions (H0), (H2), the right hand side is equal
to 0. This concludes the proof.

5.5 Proof of Remark 2.8

We need to show that (H2) holds for non-absorbing states and that (M3) holds for absorbing
states. Clearly, (H2) follows from (H2′) for non-absorbing states. On the other hand, we
already know that (M2) is fulfilled. Hence, by Lemma 4.7, (M3) for absorbing (and non-
absorbing) states is a consequence of (5.31). By (5.32), assumption (H2′) implies (5.31),
which concludes the proof.

6 Continuous Time Markov Chains

We state in this section several properties of continuous time Markov chains used throughout
the article. We start assuming that the holding rates are strictly positive and finite and that the
jump chain associated is irreducible and recurrent. We add assumptions as we progress. At
the end, we consider the case of positive recurrent, reversible Markov chains whose holding
times belong to L1(μ), where μ is the unique invariant probability measure.

Consider a countable set E and a matrix R : E × E → R such that R(η, ξ) ≥ 0, η �= ξ ,
−∞ < R(η,η) < 0,

∑
ξ R(η, ξ) = 0, η ∈ E. Let λ(η) = −R(η,η). Since λ(η) is finite and

strictly positive, we may define the transition probabilities {p(η, ξ) : η, ξ ∈ E} as

p(η, ξ) = 1

λ(η)
R(η, ξ) for η �= ξ , (6.1)

and p(η,η) = 0 for η ∈ E. We assume throughout this section that {p(η, ξ) : η, ξ ∈ E} are
the transition probabilities of an irreducible and recurrent discrete time Markov chain.
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We claim that there exists a unique stochastic semigroup {pt : t ≥ 0} on E satisfying

lim
t↓0

pt(η, ξ) − p0(η, ξ)

t
= R(η, ξ) and p0(η, ξ) = δη,ξ (6.2)

for every η, ξ ∈ E, where δη,ξ is the delta of Kronecker. To prove the existence, we construct
a Markov process {ηt : t ≥ 0} on E whose Markov semigroup satisfies (6.2). We shall use
this construction in some of the proofs below.

Let Y = {Yn : n ≥ 0} be an irreducible, recurrent, E-valued discrete time Markov chain
with transition probabilities {p(η, ξ) : η, ξ ∈ E} given by (6.1). Let (en : n ≥ 0) be a se-
quence of i.i.d. mean one exponential random variables, independent of Y . We associate to
every sample path of Y the sequence of random times T = (Tn : n ≥ 0) given by

Tn = en

λ(Yn)
·

Since Y is recurrent,
∑

i≥0 Ti = ∞ a.s. In particular, the time-change

α(t) = min

{

n ≥ 0 :
n∑

i=0

Ti > t

}

(6.3)

is a.s. finite for every t ≥ 0 and ηt = Yα(t) is a.s. well defined for all t ≥ 0. In Theorem 2.8.1
of [25] it is proved that {ηt : t ≥ 0} is a strong Markov process with respect to the filtration
{Ft : t ≥ 0}, Ft = σ(ηs : s ≤ t). The stochastic semigroup corresponding to {ηt : t ≥ 0}
fulfills (6.2), as follows from the proof of Theorem 2.8.4 in [25]. On the other hand, the
uniqueness of the stochastic semigroup is a consequence of Theorem (51) in Chapter 7 of
[13] along with the recurrence of the transition probabilities p(·, ·). Note that there is no
explosion since

∑
i≥0 Ti = ∞ a.s.

In conclusion, a collection of nonnegative numbers {R(η, ξ) : η, ξ ∈ E} satisfying the
conditions listed at the beginning of this section determines uniquely the law of a strong
Markov process {ηt : t ≥ 0}. We shall refer to R(·, ·), λ(·) and p(·, ·) as the transition rates,
holding rates and jump probabilities of {ηt : t ≥ 0}, respectively. The Markov chain Y =
{Yn : n ≥ 0} is called the jump chain associated to {ηt : t ≥ 0}.

Of course, since the jump chain Y is irreducible and recurrent, so is the corresponding
Markov process {ηt : t ≥ 0}. In consequence, {ηt : t ≥ 0} has an invariant measure μ which
is unique up to scalar multiples. Moreover,

M(η) := λ(η)μ(η), η ∈ E, (6.4)

is the invariant measure for the jump chain Y , also unique up to scalar multiples. The proofs
of these assertions can be found in Sects. 3.4 and 3.5 of [25].

Recall that τA : D(R+,E) → R+, A ⊆ E, denotes the hitting time of the set A:

τA(e·) = inf{t > 0 : et ∈ A}.
Let TA := τA(η·) and Tη := T{η}, η ∈ E. Define the stopping time τ+

A : D(R+,E) → R+ as
the first return to A:

τ+
A (e·) = inf{t > 0 : et ∈ A,es �= e0 for some 0 < s < t},

and let T +
A := τ+

A (η·), T +
η := T +

{η}, η ∈ E.
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Let Pη , η ∈ E, be the probability measure under which the jump chain {Yn : n ≥ 0} and
the Markov chain {ηt : t ≥ 0} start from η. Expectation with respect to Pη is denoted by Eη .
It follows from the proof of Theorem 3.5.3 in [25] that for any η ∈ E

μ(ξ) = Eη

[∫ T +
η

0
1{ηs = ξ}ds

]

, ξ ∈ E, (6.5)

is an invariant measure for {ηt : t ≥ 0}.

6.1 The Trace Process

We present in this subsection some elementary properties of trace processes and we state
some identities used throughout the article.

Let h : E → R+ be a nonnegative function with nonempty support F :

F := {η ∈ E : h(η) > 0} �= ∅. (6.6)

Define the additive functional {T h
t : t ≥ 0} as

T h
t :=

∫ t

0
h(ηs) ds.

Notice that T h
t ∈ R+, Pη-a.s. for every η ∈ E and t ≥ 0. Denote by {S h

t : t ≥ 0} the general-
ized inverse of T h

t :

S h
t := sup{s ≥ 0 : T h

s ≤ t}.
Since {ηt : t ≥ 0} is irreducible and recurrent, limt→∞ T h

t = ∞, Pη-a.s. for every η ∈ E.
Therefore, the random path {ηh

t : t ≥ 0}, given by ηh
t = ηSh

t
, is Pη-a.s. well defined for all

η ∈ E and takes value in the set F . We call the process {ηh
t : t ≥ 0} the h-trace of {ηt : t ≥ 0}.

Clearly, {ηh
t : t ≥ 0} coincides with the trace of {ηt : t ≥ 0} on F , defined in Sect. 2, if

h = 1{F }.
A change of variables shows that for any subset B of F and for any function f : F → R+,

∫ τB (ηh· )

0
f (ηh

t ) dt =
∫ TB

0
f (ηt ) h(ηt ) dt (6.7)

Pη-a.s. for every η ∈ E. This identity also holds if we replace τB(ηh
· ), TB by τ+

B (ηh
· ), T +

B ,
respectively. Furthermore, for any two disjoint subsets A, B of F , it follows from the con-
struction of the Markov chain {ηh

t : t ≥ 0} that

Pη

[
τA(ηh

· ) < τB(ηh
· )
] = Pη

[
TA < TB

]

for all η in F . This identity needs to be reformulated if we replace the hitting times by return
times. Indeed, if the process starting from η returns to F at η, while in the original version
the process returned to η, in the trace version the process never left η. We claim that for all
η ∈ F and all disjoint subsets A, B of F ,

Pη

[
τ+
A (ηh

· ) < τ+
B (ηh

· )
] = Pη

[
T +

A < T +
B

∣
∣T +

F = TF\{η}
]
. (6.8)
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To derive this identity, intersect the event {τ+
A (ηh· ) < τ+

B (ηh· )} with the partition {T +
F =

TF\{η}}, {T +
F = T +

η } and apply the strong Markov property to the second piece to get that

Pη[τ+
A (ηh

· ) < τ+
B (ηh

· )] = Pη

[
τ+
A (ηh

· ) < τ+
B (ηh

· ) ; T +
F = TF\{η}

]

+ Pη

[
T +

F = T +
η

]
Pη

[
τ+
A (ηh

· ) < τ+
B (ηh

· )
]
.

To conclude, observe that on the set {T +
F = TF\{η}} we may replace ηh

· by η· in the event
{τ+

A (ηh· ) < τ+
B (ηh· )}.

Proposition 6.1 Under {Pη : η ∈ F }, {ηh
t : t ≥ 0} is an irreducible, recurrent, strong Markov

chain with transition rates given by

Rh(η, ξ) = λ(η)

h(η)
Pη

[
T +

F = T +
ξ

]
, η, ξ ∈ F, η �= ξ.

Proof Recall the explicit construction of the Markov chain {ηt : t ≥ 0} presented in the
previous subsection. To derive the h-trace from this construction, we consider first the trace
of the jump chain {Yn : n ≥ 0} on F .

Define the sequence of times {tn : n ≥ 0} as t0 = 0, t1 = inf{n ≥ 1 : Yn ∈ F } and tn+1 =
tn + t1 ◦ �tn , n ≥ 1, where {�k : k ≥ 1} are the discrete time shift operators. Let Y h = {Y h

n :
n ≥ 0} be given by Y h

n = Ytn . When the jump chain {Yn : n ≥ 0} starts in F , Y h = {Y h
n : n ≥

0} defines a F -valued discrete time Markov chain with transition probabilities

p(η, ξ) = Pη

[
T +

F = T +
ξ

]
, η, ξ ∈ F.

Note that p(η, η) may be strictly positive and that Y h inherits the irreducibility and the
recurrence properties from Y .

Let T h = {T h
n : n ≥ 0} be the sequence

T h
n = h(Y h

n )
etn

λ(Y
h
n )

, n ≥ 0.

By definition, the h-trace of {ηt : t ≥ 0} is given by ηh
t = Y

h

α(t), t ≥ 0, where α(·) represents
the time-change (6.3) with Y h and T h in place of Y and T , respectively. Note that {etn : n ≥
0} is a sequence of i.i.d. mean one exponential random variables independent of the process
{Y h

n : n ≥ 0}. By this observation and by the proof of Theorem 2.8.1 in [25], {ηh
t : t ≥ 0} is a

strong Markov process on F .
The irreducibility and the recurrence of {ηh

t : t ≥ 0} are inherited from the process Y h.
On the other hand, the transition rates {Rh(η, ξ) : η, ξ ∈ F } of the strong Markov process
{ηh

t : t ≥ 0} are given by

Rh(η, ξ) := lim
t↓0

Pη[ηh
t = ξ ]
t

= p(η, ξ)

Eη[T h

0 ] = λ(η)

h(η)
Pη

[
T +

F = T +
ξ

]

for η, ξ ∈ F , η �= ξ . The second identity follows from the proof of Theorem 2.8.4 in [25]. �

It follows from this proposition that the holding rates {λh(η) : η ∈ F } and the jump prob-
abilities {ph(η, ξ) : η, ξ ∈ F } of the h-trace process {ηh

t : t ≥ 0} are given by

λh(η) = λ(η)

h(η)
Pη

[
T +

F = T +
F\{η}

]
, (6.9)
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and, for η �= ξ ,

ph(η, ξ) = Pη[T +
F = T +

ξ ]
Pη[T +

F = T +
F\{η}]

= Pη

[
TF\{η} = Tξ

]
.

Note that ph(·, ·) depends on h only through its support. The second identity is obtained
by intersecting the event {TF\{η} = Tξ } with the partition {T +

F = TF\{η}}, {T +
F = T +

η } and
applying the strong Markov property to the second piece as in the proof of (6.8).

When h is the indicator function of a set F , we obtain an explicit formula for the transi-
tion rates of the trace process.

Corollary 6.2 Let RF stand for the transition rates of {ηh
t : t ≥ 0} when h = 1{F }. Then,

for η, ξ in F , η �= ξ ,

RF (η, ξ) = R(η, ξ) +
∑

ζ∈Fc

R(η, ζ )Pζ

[
TF = Tξ

]
.

Proof By Proposition 6.1, RF (η, ξ) = λ(η)Pη[T +
F = T +

ξ ]. Consider the stopping time T +
Fc

with the convention that T +
Fc = ∞ if Fc = ∅. Decomposing the event {T +

F = T +
ξ } according

to the event {T +
F < T +

Fc } and its complement, we get

RF (η, ξ) = λ(η)Pη

[
T +

F = T +
ξ ; T +

F < T +
Fc

] + λ(η)Pη

[
T +

F = T +
ξ ; T +

Fc < T +
F

]
.

The first probability on the right hand side is equal to Pη[T +
E = T +

ξ ] = p(η, ξ), while the
second term, by the strong Markov property, is equal to

∑

ζ∈Fc

R(η, ζ )Pζ

[
TF = Tξ

]
.

This concludes the proof of the corollary. �

The previous corollary provides an explicit formula for the rates RF in terms of the
holding times λ and the transition probabilities p in the case where F = E \ {ξ0}:

RF (η, ξ) = R(η, ξ) + R(η, ξ0)p(ξ0, ξ)

for η �= ξ , {η, ξ} ⊆ E \ {ξ0}. In particular, if E is a finite set, the rates RF can be obtained
recursively.

Since {ηh
t : t ≥ 0} is recurrent and irreducible, it has an invariant measure which is unique

up to scalar multiplies. Let μ be an invariant measure for {ηt : t ≥ 0} and denote by μh
o the

measure on F given by

μh
o(ξ) := h(ξ)μ(ξ), ξ ∈ F.

Proposition 6.3 μh
o is an invariant measure for {ηh

t : t ≥ 0}. In particular, if h is μ-
integrable then {ηh

t : t ≥ 0} is positive recurrent. Moreover, if μ is a reversible measure
for {ηt : t ≥ 0} then μh

o is a reversible measure for {ηh
t : t ≥ 0}.

Proof Without loss of generality, we may suppose that μ is of the form (6.5) for some η ∈ F .
Thus, by (6.7), for any ξ ∈ E,

h(ξ)μ(ξ) = Eη

[∫ T +
η

0
h(ηs)1{ηs = ξ}ds

]

= Eη

[∫ τ+
η (ηh· )

0
1{ηh

s = ξ}ds

]

.
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This shows that μh
o is an invariant measure for the h-trace process. The second assertion

follows from Theorem 3.5.3 in [25].
Suppose now that μ is reversible for R(·, ·). Then, the measure M defined in (6.4) is a

reversible measure for the jump chain Y = {Yn : n ≥ 0}. Since the events {T +
F = T +

ξ } and
{T +

F = T +
η } depend only on Y ,

M(η)Pη

[
T +

F = T +
ξ

] = M(ξ)Pξ

[
T +

F = T +
η

]
,

for any η, ξ ∈ F , η �= ξ . In consequence, by the formula for Rh(·, ·) obtained in Proposi-
tion 6.1, μh

o is reversible for the h-trace process. �

6.2 Positive Recurrent Case

We assume from now on that the Markov chain {ηt : t ≥ 0} is positive recurrent. Denote by
μ its unique invariant probability measure.

Replacement Lemma

For any probability measure ν on E, we denote by 〈·〉ν the expected value with respect to ν.

Lemma 6.4 Fix a function g : E → R with nonempty support, integrable with respect to μ

and such that 〈g〉μ = 0. Fix also some ξ in A = {η : g(η) �= 0}. For every t > 0,

sup
η∈E

∣
∣
∣
∣Eη

[∫ t

0
g(ηs) ds

] ∣
∣
∣
∣ ≤ 2 sup

η∈A

Eη

[∫ Tξ

0
|g(ηs)|ds

]

.

Proof Let {�t : t ≥ 0} stand for the time shift operators on D(R+,E). Define the random
times H0 = 0, H1 = T +

ξ and Hj+1 = Hj + τ+
ξ ◦ �Hj

(η·), j ≥ 1. Fix an arbitrary η ∈ E and
let h : E → R+ be a nonnegative function, integrable with respect to μ. By Proposition 6.3,
the trace process {ηh

t : t ≥ 0} is positive recurrent so that

Eη

[∫ Tξ

0
h(ηs) ds

]

= Eη

[
τξ (η

h
· )
]

< ∞. (6.10)

Write

Eη

[∫ t

0
h(ηs) ds

]

=
∑

j≥0

Eη

[∫ t

0
h(ηs) ds 1{Hj ≤ t < Hj+1}

]

=
∑

j≥0

Eη

[∫ Hj+1

0
h(ηs) ds 1{Hj ≤ t < Hj+1}

]

−
∑

j≥0

Eη

[∫ Hj+1

t

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

.

(6.11)

In the last equation, we used the fact that both terms on the right hand side are finite. To
prove it, notice first that the second term is bounded by the first one. By Tonelli’s theorem,
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the first term is equal to

∑

j≥0

j∑

k=0

Eη

[∫ Hk+1

Hk

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

=
∑

k≥0

Eη

[∫ Hk+1

Hk

h(ηs) ds 1{Hk ≤ t}
]

.

Taking conditional expectation with respect to FHk
, by the strong Markov property, this sum

is equal to

Eη

[∫ H1

0
h(ηs) ds

]

+ Eξ

[∫ H1

0
h(ηs) ds

] ∑

k≥1

Pη

[
Hk ≤ t

]
.

The first term of this sum is finite by (6.10). In the second expectation, ξ appears instead
of η, and the expectation is equal to 〈h〉μ by (6.5). Finally, the sum is finite by the strong
Markov property and because Pξ [T +

ξ ≤ t] is strictly smaller than 1.
To estimate the last term in (6.11), note that the event {Hj ≤ t < Hj+1} belongs to Ft and

that on this set Hj+1 = t + τ+
ξ ◦ �t(η·). Therefore, by the Markov property,

∑

j≥0

Eη

[∫ Hj+1

t

h(ηs) ds 1{Hj ≤ t < Hj+1}
]

= Eη

[

Eηt

[∫ H1

0
h(ηs) ds

]]

.

Putting together the previous identities, we get that the left hand side of (6.11) is equal to

Eη

[∫ H1

0
h(ηs) ds

]

+ 〈h〉μ
∑

k≥1

Pη

[
Hk ≤ t

] − Eη

[

Eηt

[∫ H1

0
h(ηs) ds

]]

.

Applying the previous identity to g+ and g−, since 〈g〉μ = 0, we obtain that

Eη

[∫ t

0
g(ηs) ds

]

= Eη

[∫ H1

0
g(ηs) ds

]

− Eη

[

Eηt

[∫ H1

0
g(ηs) ds

]]

.

We claim that we may replace the stopping time H1 by Tξ in both terms of the right hand
side. Indeed, if η is different from ξ , H1 = Tξ Pη-a.s. Conversely, if the starting point η is
equal to ξ , Tξ = 0 so that, by (6.5),

Eη

[∫ H1

0
g(ηs) ds

]

= 0 = Eη

[∫ Tξ

0
g(ηs) ds

]

.

Thus, taking the supremum over E, we have proved that

sup
η∈E

∣
∣
∣
∣Eη

[∫ t

0
g(ηs) ds

]∣
∣
∣
∣ ≤ 2 sup

η∈E

∣
∣
∣
∣Eη

[∫ Tξ

0
g(ηs) ds

]∣
∣
∣
∣.

Finally, since g vanishes outside A and since ξ belongs to A, by the strong Markov
property,

Eη

[∫ Tξ

0
g(ηs) ds

]

= Eη

[∫ Tξ

TA

g(ηs) ds

]

= Eη

[

EηTA

[∫ Tξ

0
g(ηs) ds

]]

.
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Therefore,

sup
η∈E

∣
∣
∣
∣Eη

[∫ Tξ

0
g(ηs) ds

] ∣
∣
∣
∣ ≤ sup

η∈A

∣
∣
∣
∣Eη

[∫ Tξ

0
g(ηs) ds

] ∣
∣
∣
∣.

This concludes the proof of the lemma. �

Let S be a finite set and let π = {Ax : x ∈ S} be a partition of E. Denote by μx , x ∈ S,
the stationary measure μ conditioned on Ax : μx(·) = μ(·|Ax). Also, for each μ-integrable
function g denote by 〈g|π〉μ : E → R the conditional expectation of g, under μ, given the
σ -algebra generated by π :

〈g|π〉μ =
∑

x∈S

〈g〉μx 1{Ax}.

The next result shows that if the process thermalizes quickly in each set of the partition,
we may replace time averages of a bounded function by time averages of the conditional
expectation. This statement plays a key role in our investigation of metastability. It assumes
the existence of an attractor, but similar versions should exist under weaker assumptions on
thermalization.

For each x ∈ S and μ-integrable function g : E → R, let

gx := (g − 〈g〉μx )1{Ax}
and fix some state ξx in Ax , for each x in S. Next statement follows from Lemma 6.4 applied
to each gx , x ∈ S. Note that the right hand side does not depend on time.

Corollary 6.5 Let g : E → R be an integrable function. Then,

sup
η∈E

∣
∣
∣Eη

[∫ t

0

{
g − 〈g|π〉μ

}
(ηs) ds

]∣
∣
∣ ≤ 2

∑

x∈S

sup
η∈Ax

Eη

[ ∫ Tξx

0
|gx(ηs)|ds

]
.

Clearly, the right hand side in the previous corollary is bounded above by

4
∑

x∈S

‖g‖x sup
η∈Ax

Eη

[ ∫ Tξx

0
1{ηs ∈ Ax}ds

]
,

where ‖g‖x = sup{|g(η)| : η ∈ Ax}.
Mean set rates

Let h : E → R+ be a nonnegative function satisfying (6.6) and belonging to L1(μ). By
Propositions 6.1 and 6.3, {ηh

t : t ≥ 0} is irreducible and positive recurrent. Moreover, its
invariant probability measure, denoted by μh, is given by

μh(ξ) = h(ξ)

〈h〉μ μ(ξ), ξ ∈ F. (6.12)

For each pair A,B of disjoint subsets of F , denote by rh(A,B) the average rate at which
the h-trace process jumps from A to B:

rh(A,B) := 1

μh(A)

∑

η∈A

μh(η)
∑

ξ∈B

Rh(η, ξ)
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= 1

〈h,1{A}〉μ
∑

η∈A

M(η)Pη

[
T +

F = T +
B

]
,

where M has been introduced in (6.4). We used relation (6.12) and Proposition 6.1 in the
last equality. We shall refer to rh(·, ·) as the mean set rates associated to the trace process.

When h is the indicator function of a set F , we denote rh by rF . In this case,

μ(A) rF (A,B) =
∑

η∈A

M(η)Pη

[
T +

B < T +
F\B

]
. (6.13)

6.3 The Reversible Case

From now on, we shall assume in addition that the process is reversible with respect to the
invariant probability measure μ and that the measure M is finite:

∑

η∈E

M(η) =
∑

η∈E

λ(η)μ(η) < ∞. (6.14)

In particular, the mean set rates rh(A,B) are finite.
Assumption (6.14) reduces the potential theory of continuous time Markov chains to the

potential theory of discrete time Markov chains. Recall from Sect. 2.3 that 〈·, ·〉M represents
the scalar product in L2(M), that P : L2(M) → L2(M) stands for the bounded operator
defined by (Pf )(η) = ∑

ξ∈E p(η, ξ)f (ξ), and that D(f ) = 〈(I − P )f,f 〉M , f ∈ L2(M),
is the Dirichlet form associated to the Markov process {ηt : t ≥ 0}. A simple computation
shows that for every f in L2(M),

D(f ) = 1

2

∑

η,ξ∈E

M(η)p(η, ξ){f (ξ) − f (η)}2.

Fix two disjoint subsets A, B of E and recall that C(A,B) := {f ∈ L2(M) :
f (η) = 1 ∀ η ∈ A and f (ξ) = 0 ∀ ξ ∈ B}, and that the capacity of A, B is defined by

cap(A,B) := inf
{
D(f ) : f ∈ C(A,B)

}
.

As max{D(f ∧ 1),D(f ∨ 0)} ≤ D(f ), ∀f ∈ L2(M), we may restrict the infimum to func-
tions bounded below by 0 and bounded above by 1.

Denote by fAB : E → R the function in C(A,B) defined as

fAB(η) := Pη

[
TA < TB

]
.

An elementary computation shows that fAB solves the equation

⎧
⎨

⎩

(Lf )(η) = 0 η ∈ E \ (A ∪ B),

f (η) = 1 η ∈ A,

f (η) = 0 η ∈ B.

(6.15)

Clearly, we may replace the generator L by the operator I − P in the above equation. It is
not difficult to show that (6.15) has a unique solution in L2(M) given by fAB . Indeed, if f ,
g are solutions, D(f − g) = 〈(I − P )(f − g), (f − g)〉M = 0. In particular, by the explicit
expression of the Dirichlet form, f − g is constant. Since the difference vanishes on A ∪ B ,
f = g.
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Lemma 6.6 For any two disjoint subsets A, B of E,

cap(A,B) = D(fAB) =
∑

η∈A

M(η)Pη

[
T +

B < T +
A

]
.

Proof We first claim that there exists a function f in C(A,B) whose Dirichlet form is equal
to the capacity cap(A,B). Indeed, we have already seen that we may restrict the varia-
tional problem defining the capacity to functions bounded below by 0 and bounded above
by 1. Consider a sequence {fn : n ≥ 1} in C(A,B) such that 0 ≤ fn ≤ 1, limn→∞ D(fn) =
cap(A,B). Since the sequence fn is uniformly bounded, there exist f in C(A,B), 0 ≤ f ≤
1, and a subsequence, still denoted by {fn : n ≥ 1}, such that f (η) = limn→∞ fn(η) for
every η in E. By Fatou’s lemma, D(f ) ≤ lim infn→∞ D(fn) = cap(A,B). Since f belongs
to C(A,B), D(f ) = cap(A,B), which proves the claim.

We further claim that f solves (6.15). Fix η /∈ A ∪ B . Since f solves the variational
problem for the capacity, it is clear that f (η) is the argument which minimizes the convex
function F : R → R defined by

F(a) =
∑

ξ∼η

M(η)p(η, ξ){f (ξ) − a}2.

In this formula ξ ∼ η means that the underlying jump chain may jump from η to ξ , i.e.,
that p(η, ξ) > 0. An elementary computation shows that the minimum is attained at a =∑

ξ p(η, ξ)f (ξ) so that f (η) = (Pf )(η). Since fAB is the unique solution in L2(M) of
(6.15), f = fAB and cap(A,B) = D(fAB). This proves the first statement of the lemma.
The second one follows from a straightforward computation. �

In particular, by (6.13) we have the following very useful identity between capacities and
mean set rates.

Lemma 6.7 Assume that F = A ∪ B and A ∩ B = ∅. Then,

μ(A) rF (A,B) = cap(A,B).

Next result shows that the mean set rates can be expressed in terms of capacities.

Lemma 6.8 Let A, B be subsets of F such that A ∩ B = ∅. Then,

μ(A) rF (A,B) = 1

2

{
cap(A,F \ A) + cap(B,F \ B) − cap(A ∪ B,F \ [A ∪ B])

}
.

Proof The proof is elementary and follows from Lemma 6.7 and the identity

2μ(A) rF (A,B) = μ(A) rF (A,F \ A) + μ(B) rF (B,F \ B)

− μ(A ∪ B) rF (A ∪ B,F \ [A ∪ B]).
�

By assumption (6.14), the holding rates λ : E → R+ belong to L1(μ). This property
extends to the holding rates {λh(η) : η ∈ E} of the h-trace process if h belongs to L1(μ).
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Indeed, by (6.12) and (6.9),

∑

η∈E

λh(η)μh(η) = 1

〈h〉μ
∑

η∈E

M(η)Pη

[
T +

F = T +
F\{η}

]
< ∞.

Therefore, assumption (6.14) holds for the h-trace process whenever h belongs to L1(μ).
In this case, its capacity, denoted by caph(·, ·), is well defined. Next result shows a simple
relation between caph(·, ·) and the capacity of the original process.

Lemma 6.9 Let h : E → R+ be a nonnegative μ-integrable function with nonempty support
denoted by F . Then, for every subsets A, B of F , A ∩ B = ∅,

〈h〉μ caph(A,B) = cap(A,B).

Proof Fix a function h : E → R+ with the properties required in the statement of the lemma
and two subsets A, B of F such that A ∩ B = ∅. By Lemma 6.6 applied to the process
{ηh

t : t ≥ 0} and by identities (6.8), (6.12) and (6.9),

caph(A,B) =
∑

η∈A

μh(η)λh(η)Pη

[
τ+
B (ηh

· ) < τ+
A (ηh

· )
]

= 1

〈h〉μ
∑

η∈A

M(η)Pη

[
T +

B < T +
A

∣
∣T +

F = TF\{η}
]

Pη

[
T +

F = T +
F\{η}

]
.

Since for η ∈ A, the event {T +
B < T +

A } is contained in the event {T +
F = TF\{η}} Pη-almost

surely, the previous expression is equal to

1

〈h〉μ
∑

η∈A

M(η)Pη

[
T +

B < T +
A

]
.

By Lemma 6.6 this expression is equal to 〈h〉−1
μ cap(A,B), which proves the lemma. �

We conclude this subsection proving a relation between expectations of time integrals of
functions and capacities. Fix two disjoint subsets A, B of E. Define the probability measure
νAB on A as

νAB(η) = M(η)Pη

[
T +

B < T +
A

]

cap(A,B)
, η ∈ A.

Denote by EνAB
the expectation associated to the Markov process {ηt : t ≥ 0} with initial

distribution νAB . The proof of the following proposition is an adaptation of the proof of
identity (4.28) in [14].

Proposition 6.10 Fix two disjoint subsets A, B of E. Let g : E → R be a μ-integrable
function. Then,

EνAB

[∫ TB

0
g(ηt ) dt

]
= 〈g, fAB〉μ

cap(A,B)
·
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Proof We first claim that the proposition holds for indicator functions of states. Fix an ar-
bitrary state ξ ∈ E. Consider the random time tB := inf{n ≥ 0 : Yn ∈ B} and the last exit
time

LAB := sup{n ≥ 0 : Yn ∈ A and n < tB}
with the convention that sup∅ = −∞. Then,

Pξ

[
TA < TB

] =
∑

n≥0

Pξ

[
LAB = n

]

=
∑

n≥0

∑

η∈A

Pξ

[
Yn = η; n < tB

]
Pη

[
T +

B < T +
A

]

=
∑

η∈A

Pη

[
T +

B < T +
A

] ∑

n≥0

Pξ

[
Yn = η; n < tB

]
.

Since Y is reversible with respect to M , the last expression is equal to

∑

η∈A

Pη

[
T +

B < T +
A

] M(η)

M(ξ)

∑

n≥0

Pη

[
Yn = ξ ; n < tB

]
.

Recall from the beginning of this section that {en : n ≥ 0} is a sequence of i.i.d. mean one
exponential random variables independent of the jump chain {Yn : n ≥ 0}. By definition of
the measure νAB , this sum can be rewritten as

cap(A,B)
∑

η∈A

νAB(η)
λ(ξ)

M(ξ)
Eη

[ tB−1∑

n=0

en

λ(ξ)
1{Yn = ξ}

]

= cap(A,B)

μ(ξ)
EνAB

[ ∫ TB

0
1{ηs = ξ}ds

]

.

This proves the assertion for g = 1{ξ}. By linearity and the monotone convergence theorem
we get the desired result for positive and then μ-integrable functions. �

In particular, taking A = {η} and B = {ξ} for η �= ξ we have that

Eη

[ ∫ Tξ

0
g(ηs) ds

]

= 〈g, f{η}{ξ} 〉μ
cap({η}, {ξ}) (6.16)

for any μ-integrable function g.
This formula provides a more accurate estimate in Corollary 6.5 in the reversible context.

For each x ∈ S, let

cap(ξx) := inf
η∈Ax\{ξx }

cap({η}, {ξx}).

Lemma 6.11 Let g : E → R be a function integrable with respect to μ. If the measure μ is
reversible then, for each x ∈ S,

sup
η∈Ax

Eη

[ ∫ Tξx

0
|gx(ηs)|ds

]

≤ 2 〈 |g| 〉μx

cap(ξx)
μ(Ax),

where |g|(η) = |g(η)| for all η in E.
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Proof By (6.16) and the fact that 0 ≤ f{η}{ξx } ≤ 1, the left hand side is bounded above by

sup
η∈Ax\{ξx }

〈 |gx |, f{η}{ξx } 〉μ
cap({η}, {ξx}) ≤ 〈 |gx | 〉μ

cap(ξx)
≤ 2 〈 |g|1{Ax} 〉μ

cap(ξx)

for each x ∈ S. This completes the proof. �
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